Dynamic C 5.x

Integrated C Development System

Technical Reference

Revision 2

Z-World * Dynamic C 5.x

Technical Reference « Part Number 019-0003-02
Revision 2 « 021-0004-02 « Printed in U.S.A.
Last revised by TI « August 26, 1998

Copyright
© 1998 Z-World, Inc. All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its
products without providing notice.

Trademarks

» Dynamic C® is a registered trademark of Z-World, Inc.
¢ PLCBus" is a trademark of Z-World, Inc.
» Windows® is a registered trademark of Microsoft Corporation.

Notice to Users

When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer’s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
24-Hour FaxBack: (530) 753-0618
Web Site: http://www.zworld.com
E-Mail: zworld@zworld.com

TABLE oF CONTENTS

About This Manual iX
Installing Dynamic C 11
Introduction to Dynamic C 21
INrOAUCLION ...t 2-2
WY C? oottt 2-2

The Nature of Dynamic Cccceevevieriieieiieeeeeeeeeee e 2-2
SPEEA .o 2-3
Dynamic C is DIfferentccceceeeverininenenincnienceieeeceenesenaes 2-3
How Dynamic C Differs........ccccvveverierieniieiereeieeeeeeeee e 2-4
Initialized Variables..........ccocveeeriirienieeiereeeeeee e 2-4
Function Chainingccccoeverenienienienieneeeieeeceesese e 2-5
Global INitialiZationcecveeierierieeierie et seees 2-6
COSLALEMENLS ..ottt 2-7
Interrupt Service ROULINESccceoveeeirirerinineneneneneseceeeeaen 2-7
Embedded Assembly Codeccocvveieriieieriinieieeeeeeeeee e 2-7
Shared and Protected Variablesccccoeeeevieeieniesienieeceeieeees 2-8
Extended MEmOTYcocveieiieieieeiecieeieeteee et 2-8
External Functions and Dataccccoeveiirienieerieeseeeeee, 2-9
Function-Calling Methodsc.ccoevevenenieiinnnininencnenencnene 2-10
SUDTUNCLIONS ...ttt 2-10
Enumerated TYPEScoevverirenienieiiieieeeteteeeceeee e 2-10
Default Storage Classcccvverererienienieieenieeneseseseseneeeeeene 2-10
Dynamic C and Z-World Controllerscceeeevereniecienenceenen. 2-11
Physical MEMOTYcceveiirieieeieieseesie et ee 2-11
Watchdog TIMEToeueeiieieeeeeeeee s 2-11
Real-Time OpPerationsccecereeeerereeserseenieeseeneeeeeseeeeesenenns 2-11
Restart Conditionscoceeeerierierienienieeieeeeesie e 2-12
Using Dynamic C 31
INStAlAtioN .oo.eeiiiiiiiiiiiiieete e 3-2
WIIING PrOGramSceeuieiiieeiieiiecieeeeete ettt s eae e 3-2
Compiling PrOZramsccccccvevieeverieeieneeieereereseeseeeeesseseesseenesaeas 3-3
Compiler OPLIONSc.veivievierieiieietieeesteeeesteeeesreeee e esesreessesseens 3-4

Technical Reference

Table of Contents ¢+ 3

Debugging Programsccccceevevveeienieeeenreeeenreeseeereessesreesseeseessesnnas 3-5

POLING ..ooviiiiieee ettt e 3-6
SINGIE SLEPPING .vevvirieirierietietieteeteerte et e ste et steesesreebesreebesreesrens 3-6
DiSaSSEMDILTc..eeiiiiiiiiiieieeeeeeeee e 3-7
Break POINES ...cc.ooiiiiiiieiie et 3-7
Watch EXPIESSIONSccviivieieieieieeeienreeeeeteeeeeteeneeeeessessnessessnesens 3-8
Returning to Edit Mode........coocviivieeiiiiiiiieecie e 3-9
Creating Standalone Programscccceeeevveeeerieseeneeeesieeeesieenens 39
Controller with Program in EPROMcccooeeviiiienieieeeienen, 3-9
Controller with Program in Flash Memorycccccevvveeevennnnnen. 3-9
Controller with Program in RAMcccoooveveivieieiececeeieceenee 39
HEID oot 3-10
Function LOOKUDeevuiiiiierieeiieeeeceecteeeece e 3-10
Function ASSIStaNCecceevuererrienieinienieieeeeeeeeeeee e 3-12
Dynamic C Environment 41
EdItiNg ..ot 4-2
IMEIUS .ttt ettt ettt et ettt ettt sae e st e sbaesate e e 4-3
File MEINU ..ottt s 4-4
Edit MENU ..ottt s 4-9
CompPile MENU.....ccuoeuiiiieieiieieeeee e 4-12
RUN MENU ..ottt 4-14
INSPECt MENU ..ottt 4-16
OPLioNS MENUcouieeiiiieiiiieie ettt 4-19
WINAOW MENU ..ottt 4-30
HElp MENU ..ot 4-36
The Language 5-1
OVEIVIEW ..ttt sttt sttt sttt ettt ettt sb et esbe e e sbeeaesaeen 5-2
Program Filescccoovieieiiiecienieeieceeeseee et 5-2
SUPPOTE FILES .ottt ettt 5-3
STALEMENLSeveeneiiiieieeieneetet ettt s 5-4
DeClarationscceeeerierienieeieneeeeeee e 5-4
FUNCLIONS ..o 5-4
ProtOtYPES ooeniiieiiiie ettt e 5-5
Type DefiNitionsccceevviiieiiieierieeieeeet et 5-6
IMOAUIES ...ttt st 5-8
IMAACTOS .evtentiinieiteieeite ettt sttt sttt st s e 5-10
Program FIOWc.cocveeiiiiiiinieciie ettt 5-12
LLOOPS ettt ettt st eenae e 5-12
Continue and Breakcooceeviriiniiienenienienieneceeeeeeeee 5-13
Branchingcoccveeciieiiieiieiieeeeeeeee et 5-15

4 + Table of Contents Dynamic C 5.x

Primitive Data TYPESoeveeeiieiieeieeee ettt eae e 5-17
Aggregate Data TYPES ...ccveeeevciienieeiieiieeieenee et ere e ve e 5-18
StOTaZE ClASSES .oovvveeerieiieeieeitieeieeree st eeeereeteesveebeesseenseesnnas 5-20
POINLELS .oeeiieiiiieieicee et 5-20
ArgumMENt PaSSINGcccevvveeriieiiienieeieeeeeie e 5-21
Memory Managementcceeeveereeeieeeneeeeiueeneesieeneessseessnesnsesnenes 5-22
MemOTy PartitionsSeecveereeeciienieeieesieeieeseeeieeseesreesneeneenns 5-23

C Language EIEMEeNntscccceeeueriiieriieeiieiieeeecieeieeeveevee e eiee e 5-25
KEYWOTAS ...viiiiieiiieiie ettt s 5-25
INAIMES ettt ettt 5-38
NUMDETS ...ttt 5-39
Strings and Character Data............ccccceeveeienieeieneeieceeieeeee 5-40
OPETALOTS ...vveeereeerieeteeiteste et eseeeteesteesbeessseeseesssesseesseeeseeseens 5-41
DITECHIVES ...utiiiinieriieie ittt 5-50
PUnctuationcooeeviiieiniinienteeeee e 5-53
Extended Memory Datacccocuveeeiieeieiieeiecieereceeereeeeeve e 5-53
Using Assembly Language 6-1
ReEgIStEr SUMMATYooveeiiiieiieiecieeie et 6-3
GENEral CONCEPLS ..uvveuveeienrieeieeieieeeetesteeeesseeeesseeaesseesesseensesneensenns 6-3
COMIMENLSooviiiiiiieiieiceecreeteeeete ettt 6-4
LabEIS ..ttt 6-4
Defining CONSLANLScc.eeevereeeierieeienieeieeeeieeeeee e e ee e eaesnees 6-4
EXPIESSIONS ..euvivieieeiieieeieeieeieeteeete e te e eee e eaesneensesneensesnnenseas 6-5
Special SYMDOLSocevevieieiieieieeeeee e 6-5

C Variablescoerviriiriiiiicieicteteteteeeee e 6-6
Standalone Assembly Codeccvrieriieiierieriiriee et 6-6
Embedded Assembly Codecccoevieriirieriirieieeeeeeeeeee e 6-7
No IX, Function in ROot MEMOTYccecveveerieriiriesierieeeeieeeenes 6-8
Using IX, Function in Root Memorycccccceeeeeercerencnvencnnenne. 6-9
No IX, Function in Extended Memorycccccvvverercvenrennennen. 6-10

C Functions Calling Assembly Codeccceveveveeriecienenieieeenene 6-12
Assembly Code Calling C FUNCHONSccevvevvereerierierieriereeieennens 6-13
Indirect Function Calls in Assemblycccccoeeieiinieiinnieiieeeeee 6-14
Interrupt Routines in ASSEMDLYcccveeverieierieiereeieceee s 6-14
Common Problemscccoeruerienienieiiiiiiieeneneeesese e 6-16
Costatements 71
OVEIVIEW ...ttt sttt ettt sttt ettt e et e sttt st eaesbeenaesbean 7-2

Technical Reference Table of Contents ¢+ 5

INAINE ..ttt sttt e 7-4
STALE ..ttt et 7-5
WRILEOT .ttt 7-5
YL o 7-7
ADOTL ittt sttt 7-8
The CoData StrUCIUIEco.everireirierierieiee et 7-9
The Firsttime Flag and Firsttime Functionscccccecvevveeneeen. 7-11
Advanced CoData USAZEcccveerreeriienieeieenieesieeneeeveesveeneens 7-12
Interrupts 8-1
INLETTTUPt VECLOTS .ottt 8-3
Remote Download 9-1
The Download Managerccocueeverueecvenreerenreereeeenreereesneeeesveennas 9-3
Enter Password........coccoveiiiiiiiiniiiicieeeeee e 9-3
Set PaSSWOId ...c..ooviiiiiiiiieiieieecee e 9-3
Report DLM Parametersccceeeveevieeeieenieenieeieenieeieeseeeveennnes 9-3
Download Programc.ccceeeveveeeieneeniieienieeeeereeeeereeseeeveene e 9-4
Execute Downloaded Program...........ccccoevveeevienieeeenieeeeienreeneennn. 9-4
Hangup Remote Modemcccoecvieviienienniienieeieesieeieenee e 9-4
The DLM COdecouieuiiiiiiiiiieiesie ettt 9-4
The Downloaded Program (DLP)ccccceeviivvieniieienieeieeeeeecveeee e 9-5
How to Use the DLMccoiiiiiiiiieeeeeeeeecee e 9-5
The DLP File FOrmatcccoooiviriiiniiriieeeee e 9-6
Appendix A:

Run-Time Error Processing A1
LoNG JUMPS .ottt A-4
WatchdOg TIMETeoeeeieiieieee et A-4
Protected Variablesccccovviieiirienieieeee e A-5

Appendix B: Efficiency B-1
Nodebug KeyWordccecieiieieriiiieieceeseeeece et B-2
Static Variables.........coeeierieiienieiireeece e B-2
EXEcution SPEEdc.eecveiiiieiieriieieeete ettt B-3
SUDTUNCHIONS ..ottt B-3
Function Entry and EXitccceeviiiiiiiiieniieieciecee e B-4

6 ¢ Table of Contents Dynamic C 5.x

Appendix C: Software Libraries C-1

HEAARTS ...ttt C-6
Function Headersc.ccoocovviininiininiiiiiiiceecteeeee C-7
IMOAUIES ...ttt st st C-7

Appendix D: Extended Memory D-1

Physical MEMOTYccceeieriieieiieieeiieie ettt D-2
Memory Managementcocveeveeenierniieniennieenieesee e D-2
MemOry Partitionseecveeueeierieeieniieieeeesieeeeie e see e eae e D-4
Control over Memory Mappingcccceeeeeeererenenenensenensennennen D-6

Extended Memory FUnCtionscocceevverenenicnienieneeineecncnenennas D-6
SUZZESLIONSveeveieieiieiieiieieeieeteste et ete st ete e sseensesseeneesesneenesens D-7
Extended Memory Dataccccoevevienienienienienieinieceeecneseeee D-8

Appendix E: Compiler Directives E-1

Default Compiler DIr€CtiVESc.ecevevueeierieeieiieereeiereeeesreeee e eee e E-2

Appendix F: File Formats F-1

Layout Of ROM Filescccevieiiieiieiieieeeeie e F-2

Layout of Downloadable Filescccoeieririerieieeeecee e F-2

Layout of Download to RAM Filesc.cccoivinienenncnincncniceeene. F-3

Hex File Informationccoccveevereesieneeriesieeeeeeeeee e F-4

Jumping to Another Programccccceevinininenenninienencnceeee, F-5

Burning ROMc.cociiiiiiiiiieienccctetcteeeeeeeese st F-5
CoPYTIght NOTICEeevvevieieeiieieeieie ettt F-5

Appendix G: Reset Functions G-1
Reset DIifferentiationcooceveevierienenienenieeceeeeescee e G-2
ReSEt GENETAtIONeeniiiiiiiiieiceteeteeet ettt e G-4

Appendix H:

Existing Function Chains H-1

Appendix I: New Features 1-1

Macros with Parametersccoceveeverienienienenieneec et I-2

Function Chainingcccecveruievieriieienieeiieeenreeeesreeee e eae e eaesenennens I-2

Global INItaliZaAtIONcceeveieieieieece e I-2

PIINEINE . c.tieeieeiieceeeee ettt te e st e e b e snseeaeeennas I-2

MISCELANEOUSevivieiiiieieeieie ettt I-2

TOOIDAT ...ttt et I-3

Technical Reference Table of Contents ¢+ 7

COMPILE MENU ..ottt ettt a et esaesre e I-3

Function “ASSISTANt”ccceeeeveeiieeiienieeieenreereenee e eseeeereeseneesee e I-3

Costatement Changesc.eeveeeieerieeiieenieerieeseeeieesreereesneesseenanes I-3

Remote Download with Download Managercccccceeeevvereennennen. I-3

NEW LIDIATIES ..veevvicvieiieiieiieiesieetese ettt ettt sreeeesreeneseeesseeneas 1-4

RESEt FUNCHIONS ...eiiivieiiiciieciecte et I-4

Backward Compatibilityc.ccceeeueieevierieieeieieeieeeeeeere e 1-4
Appendix J: Z-World Products J-1
Index

8 ¢+ Table of Contents Dynamic C 5.x

ABourt THis MANUAL

Z-World customers develop software for their programmable controllers
using Z-World’s Dynamic C development system running on an IBM-
compatible PC. The controller is connected to a COM port on the PC,
usually COM2, which by default operates at 19,200 bps.

The Standard version of Dynamic C is suitable for programs up to

80 kbytes, with limited access to extended memory. The Deluxe version
supports programs with up to 512K in ROM (code and constants) and
512K in RAM (variable data), with full access to extended memory.

The Three Manuals

Dynamic C is documented with three reference manuals:
* Dynamic C Technical Reference
* Dynamic C Application Frameworks
* Dynamic C Function Reference.

This manual describes how to use the Dynamic C development system to
write software for a Z-World programmable controller.

The Application Frameworks manual discusses various topics in depth.
These topics include the use of the Z-World real-time kernel, costatements,
function chaining, and serial communication.

The Function Reference manual contains descriptions of all the function
libraries on the Dynamic C disk and all the functions in those libraries.

A Please read release notes and updates for late-breaking
information about Z-World products and Dynamic C.

Technical Reference About This Manual ¢ ix

Assumptions

Assumptions are made regarding the user's knowledge and experience in
the following areas:

* Understanding of the basics of operating a software program and
editing files under Windows on a PC.

* Knowledge of the basics of C programming. Dynamic C is not the
same as standard C.

299 For a full treatment of C, refer to the following texts:

The C Programming Language by Kernighan and
Ritchie (published by Prentice-Hall).

and/or

C: A Reference Manual by Harbison and Steel
(published by Prentice-Hall).

* Knowledge of basic Z80 assembly language and architecture.

For documentation from Zilog, refer to any of the
2 d following texts:

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Acronyms

Table 1 lists the acronyms that may be used in this manual.

Table 1. Acronyms

Acronym Meaning
EPROM Erasable Programmable Read-Only Memory
EEPROM Electronically Erasable Programmable Read-Only Memory
NMI Nonmaskable Interrupt
PIO Paralld Input/Output Circuit

(Individually Programmable Input/Output)

PRT Programmable Reload Timer
RAM Random Access Memory
RTC Real-Time Clock
SIB Serial Interface Board
SRAM Static Random Access Memory
UART Universal Asynchronous Receiver Transmitter

x ¢ About This Manual Dynamic C 5.x

Conventions

Table 2 lists and defines typographic conventions that may be used in this
manual.

Table 2. Typographic Conventions

Example Description
Wil e Courier font (bold) indicates a program, a fragment of a program,
or aDynamic C keyword or phrase.
/I IN-01... Program comments are written in Courier font, plain face.
Italics Indicates that something should be typed instead of the italicized
words (e.g., in place of filename, type afile's name).
Edit Sans serif font (bold) signifies amenu or menu selection.

An dlipsisindicates that (1) irrelevant program text is omitted for
brevity or that (2) preceding program text may be repested

indefinitely.

[] Brackets in a C function’s definition or program segment indicage
that the enclosed directive is optional.

< > Angle brackets occasionally enclose classes of terms.

albjc A vertical bar indicates that a choice should be made from amohg

the items listed.

Programming Abbreviations

This manual uses these programming abbreviations for convenience.
* uint means unsigned integer

* ulong means unsigned long

These abbreviations are not standard C keywords, and will not work in an
application unless they are first declared with typedef or #define as in
the examples shown below.

typedef unsigned int uint
or

#define ulong unsigned long

Technical Reference About This Manual ¢+ xi

Ilcons

Table 3 displays and defines icons that may be used in this manual.

Table 3. Icons

Icon Meaning
é;: /| Referto or see
;N
‘ﬂ' Please contact
A Caution
/ Note
A High Voltage
ip |7
Factory Default
— For ordering information, call your Z-World
) Sales Representative at (530) 757-3737.

xii ¢+ About This Manual

Dynamic C 5.x

1

INSTALLING DyNamic C

Technical Reference Installing Dynamic C ¢+ 1-1

Dynamic C software comes on two 34" floppy disks. Before installing
Dynamic C, ensure the PC/workstation is running Windows 3.1 in 386
enhanced mode, Windows 95, or Windows NT, and has a hard disk with at
least 4 megabytes of free space. There must also be about 4 megabytes of
free memory and at least one free COM port.

Insert disk 1 in the appropriate disk drive on the PC. Issue the Windows
“Run...” command and type the following command.

<disk>:\SETUP

where «disk> is the name of the floppy disk drive. If the floppy disk drive
is “A:” then type

A:\SETUP
The installation program will begin to run.

The following initial dialog prompts for the disk and directory in which
Dynamic C is to be installed.

— T

Eminr destnaiies dimciony for Dymemic G
issialation

[I

Type the name of a new directory here. The installation program will
create the directory. If the name of an existing directory is specified, the
installation program will present the following dialog.

RN RN
Thie dirsctory "CA0E" s not emphd Do you wish o overeriba ams

exdsting flies In this direcliony? [Fress "Ho® to Install only tiles that do nod
alreaty exdst. "Cancal’ 1o select & new destination].

[es] [Mo | [concal

If an incorrect pathname is given for the new Dynamic C directory, the
installation program will fail, and will produce a message like this one.

Directory rol found and cannet be consbructed, please ensure direciony

e b owalkil,

1-2 ¢+ Installing Dynamic C Dynamic C 5.x

Once the Dynamic C installation program has started successfully, it will
show a progress indicator.

lagasllation in peograos. ..

0 IEEN

After a short time, the installation program will ask for disk 2.

9 Pleags ingesrl Disk 2

(oK] [cancal]

To continue with the installation, insert disk 2 and click OK. The installa-
tion will terminate if ‘Cancel’ is selected.

When the installation process is nearly finished, it displays the following

dialog

R P EESE i
Select & COM port o eso with Dyrsmic CH you
I USCOHAIL, el preas DE 0 8008 e
duindt ¥You can chonge this sefing lster from e

Ihnnmas |- Dphoss mene

1 G o
(IR = T

[]

Click to select the COM port to be used. When OK is clicked, the installa-
tion program will display the following message.

Enil of sestups

(o]

Technical Reference Installing Dynamic C + 1-3

A new Windows program group that includes Dynamic C and an online
help file has now been created.

Dynamic C may now be run from Windows. Use any of the standard
Windows methods (such as double-clicking the icon) to launch
Dynamic C.

#== Please contact Z-World’s Technical Support at
ﬂ (530)757-3737 if there are any problems.

1-4 + Installing Dynamic C Dynamic C 5.x

2

INTRODUCTION TO DYNAMIC C

Technical Reference Introduction to Dynamic C ¢ 2-1

Introduction

Dynamic C is an integrated development system that runs on an IBM-
compatible PC and is designed for use with Z-World controllers and
control products. Appendix Z lists Z-World’s products.

Z-World’s controllers are based on Zilog’s Z180 microprocessor and
include a variety of analog inputs and outputs, digital inputs and outputs,
high-current outputs, serial communication channels, clocks and timers.
Z-World controllers are programmed using an enhanced form of the well-
known C programming language... Dynamic C.

Why C?

Programmable controller provide the most flexible way to develop a
control system. And C is the preferred language for embedded systems
programming. It is widely known and produces efficient and compact
code. Because C is a high-level language, code can be developed much
faster than with assembly language alone. And C allows programming at
the machine level when necessary.

The Nature of Dynamic C
Dynamic C integrates the following development functions
Editing, Compiling, Linking, Loading, Debugging

into one program. In fact, compiling, linking and loading are one function.
Dynamic C has an easy-to-use built-in text editor. Programs can be
executed and debugged interactively at the source-code level. Ultimately,
EPROM files or down-loadable files can be created for programs that will
run standalone in the controller. Pull-down menus and keyboard shortcuts
for most commands make Dynamic C efficient.

Because all the development functions are integrated, it is possible to
switch from one function to another with a simple keystroke.

Dynamic C also supports assembly language programming. It is not
necessary to leave C or the development system to write assembly lan-
guage code. C and assembly language may be mixed, line by line, in a
program.

For debugging, Dynamic C provides a standard I/O window, an assembly
window, a “watch” window, a register window and a stack window. The
standard I/O window allows the program in a controller to print messages
on the development screen. The assembly window displays an assembly
view of compiled code. The watch window allows the programmer to type
and evaluate expressions, monitor or set variables, and call functions.
Dynamic C’s debugger allows breakpoints to be set and cleared on-the-fly,
to single-step with and without descent into functions, and to view execu-
tion at the assembly level as well as at the source-code level.

2-2 ¢+ Introduction to Dynamic C Dynamic C 5.x

Dynamic C provides extensions to the C language (such as shared and
protected variables) that support real-world system development. Interrupt
service routines may be written in C. Dynamic C supports real-time multi-
tasking with its real-time kernel and its costatement extension.

Dynamic C comes with many function libraries, all in source code. These
libraries support real-time programming, machine level I/0, and provide
standard string and math functions.

A Please refer to the Dynamic C Application Frameworks and
Function Reference manuals.

Speed

Dynamic C compiles directly to Z180 memory. Functions and libraries are
compiled and linked and downloaded on-the-fly. On a fast PC, Dynamic C
can compile more than 250 lines of source code per second, generating
about 2500 bytes of machine code per second. Thus, a large program—
say 8,000 lines of code—might generate 80 kbytes of machine code and
take about 30 seconds to compile and download.

The application code might only be 400 lines, yet it can make calls to
several thousand lines of library code, all of which are compiled when the
program is compiled.

Dynamic C is Different

Dynamic C differs from a traditional C programming system running on a
PC or under UNIX. The motivation for being different is to be better: to
help customers write the most reliable embedded control software possible.
Some of the devices and constructs that C programmers employ on other
systems just don’t work very well for embedded systems. At the very least,
they must be used with caution. In some instances, Z-World has extended
the C language where the value of the extension is compelling.

In an embedded system, there is no operating system or supervisor that can
halt a program if it goes wrong or perform services for the program. An
embedded program has to do it all, and handle its own errors and keep on
running. An embedded program also has to initialize itself.

In an embedded system, a program runs from EPROM (or flash) and uses a
separate RAM for data storage. Many Z-World controllers have battery-
backed RAM providing nonvolatile storage.

Often, an embedded program comprises a number of concurrently execut-
ing tasks, rather than a single task.

Technical Reference Introduction to Dynamic C ¢+ 2-3

How Dynamic C Differs

The differences in Dynamic C are summarized here and are discussed after
the summary.

* Variables that are initialized when declared are considered named
constants and are placed in ROM. It is an error to try to change such
“variables.”

* The default storage class is static, not auto.

* There is no #include directive, nor are there any include (header)
files. Library functions and data are bound to a program by other
means. There is a #use directive.

* Dynamic C does not support enumerated types.
* The extern and register keywords have an altered meanings.

» Function chaining, a concept unique to Dynamic C, allows special
segments of code to be included within one or more functions. When a
named function chain executes, all the segments belonging to that chain
execute. Function chains allow software to perform initialization, data
recovery, or other kinds of tasks on request.

* “Costatements” allow concurrent parallel processes to be simulated in a
single program.

* Dynamic C allows the programmer to write interrupt service routines in
C.

* Dynamic C supports embedded assembly code.

* Dynamic C has shared and protected keywords that help protect data
from unexpected loss.

* Dynamic C has a set of features that allow the programmer to make
fullest use of extended memory.

* Dynamic C provides two forms of argument passing (using the IX
index register vs. using the stack pointer SP).

* Dynamic C provides a subfunc construct to optimize frequently used
code.

Initialized Variables

Static variables initialized when they are declared are considered named
constants. The compiler places them in the same area of memory as
program code, typically in EPROM or flash memory. Uninitialized
variables are placed in RAM, and must be initialized by the application
program.

2-4 + Introduction to Dynamic C Dynamic C 5.x

int i = 100; // initialized in declaration here,
// becomes a named constant

int k; // variable placed in RAM, then

k = 100; // initialized by your program.
When a program is being compiled directly to a controller that has
EPROM, the compiler places constants and program code in RAM since it
cannot modify the controller’s EPROM. Under these circumstances,
constants can be modified, intentionally or not, but it is an error to do so.

The default storage class for local variables is static, not
/ auto, so be doubly careful when initializing variables in
functions.

Function Chaining

Function chaining, a concept unique to Dynamic C, allows special seg-
ments of code to be distributed in one or more functions. When a named
function chain executes, all the segments belonging to that chain execute.
Function chains allow the software to perform initialization, data recovery,
or other kinds of tasks on request.

Dynamic C provides two directives, #makechain and #funcchain, and
one keyword, segchain.

e #makechain chain_name

Creates a function chain. When a program executes the named
function chain, all of the functions or chain segments belonging to that
chain execute. (No particular order of execution can be guaranteed.)

e #funcchain chain_name name
Adds a function, or another function chain, to a function chain.
e segchain chain name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to
the named function chain.

Function chain segments defined with segchain must appear in a function
directly after data declarations and before executable statements, as shown
below.

Technical Reference Introduction to Dynamic C ¢+ 2-5

my_function () {
data declarations
segchain chain x{
some statements which execute under chain x

}
segchain chain y{
some statements which execute under chain y

}
function body which executes when my_function
is called

}

A program will call a function chain as it would an ordinary void function
that has no parameters. For example, if the function chain is named
recover, this is how to call it.

#makechain recover

recover () ;
Several function chains can be found in Dynamic C libraries. These are
listed in Appendix X.

Global Initialization

Embedded systems typically have no operating system to perform services
such as initialization of data—something programmers who are accus-
tomed to an operating system might take for granted.

Various hardware devices in a system need to be initialized not only by
setting variables and control registers, but often by complex initialization
procedures. For this purpose, Dynamic C provides a specfic function
chain: _GLOBAIL_INIT.

Any global initialization may be performed by adding segments to the
_GLOBAL_INIT function chain, as shown in this example.
int my func(long j){

int b = 100;
int c, z;
char* k;

segchain _GLOBAL_INIT{
c = 40; k = “Press any key...”;
for(z =0, z < c; z++){

}

your function code

2-6 ¢+ Introduction to Dynamic C Dynamic C 5.x

Then, have the program call _GLOBAL_INIT during program startup, or
when the hardware resets. This function chain executes all the global
initialization statements indicated by all _GLOBAL_INIT segments in the
program (and in Dynamic C libraries as well).

Z-World supports two levels of initialization. A major initialization, or
super initialization, takes place only when there is a need to erase all past
history, such as when installing a new program EPROM, or when a system
loses its memory. A minor, or normal, initialization taking place every
time the system resets or powers up. In a minor initialization, exactly
which data are (re)initialized depends on the nature of the system.

For further detail, refer to Appendix G, Reset Functions, and
& to the Dynamic C Application Frameworks manual.

Costatements

Dynamic C provides a capability whereby the program can execute a set of
tasks (almost) simultaneously. A data structure, some additions to the C
language, and some functions comprise what Z-World calls costatements.
A costatement is a construct—a block of code—that can suspend its own
execution, thereby allowing other code to execute. A sef of costatements,
presumably in an endless loop, executes concurrently, seemingly in
parallel. All of the tasks in the set are in states of partial completion.

Costatements may execute repeatedly, or execute once, when triggered,
and then stop.

For further detail, refer to Chapter 7, Costatements, in this
manual, and to the Dynamic C Application Frameworks
manual.

Interrupt Service Routines

Interrupt service routines can be written in Dynamic C using the C
language. The keyword interrupt designates a function as an interrupt
service routine.

interrupt my_handler () {

}
Embedded Assembly Code

There are times when assembly language is necessary or desirable. For
time-critical or machine-dependent code, it is natural to choose assembly
language.

Technical Reference Introduction to Dynamic C ¢+ 2-7

Dynamic C allows Z180 assembly code to be embedded in a C program.
Assembly code may be written within a C function or complete assembly
code functions may be written. C-language statements may also be
embedded in assembly code.

For further detail, refer to Chapter 6, Using Assembly
2 é Language.

Shared and Protected Variables

An important feature of Dynamic C is the ability to declare variables as
protected. Such a variable is protected against loss in case of a power
failure or other system reset because the compiler generates code that
creates a backup copy of a protected variable before the variable is
modified. If the system resets while the protected variable is being
modified, the variable’s value can be restored when the system restarts.

A system that shares data among different tasks or among interrupt routines
can find its shared data corrupted if an interrupt occurs in the middle of a
write to a multibyte variable (such as type int or £loat). The variable
might be only partially written at its next use.

Declaring a multibyte variable shared means that changes to the variable
are atomic, that is, any change to the variable is a complete change.
(Interrupts are disabled while the variable is being changed.)

Extended Memory

Dynamic C supports the 1-Mbyte address space of the Z180 microproces-
sor. The address space of the Z180 is segmented by a memory manage-
ment unit. Dynamic C allows programs containing up to 512 kbytes in
ROM (code and constants) and 512 kbytes of RAM (data). Normally,
Dynamic C takes care of memory management, but there are instances
where the programmer will want to take control of it.

Dynamic C has keywords and directives to help put code and data in the
proper place. The keyword root selects root memory (addresses within
the 64-kbyte physical address space of the Z180). The keyword xmem
selects extended memory, which means anywhere in the 512-kbyte code
space. The directive #memmap allows further control. Special statements
xdata and xstring declare blocks of data in extended memory. Certain
functions, such as xgetfloat and xstrlen help to access data in
extended memory.

Refere to Appendix D, Memory Management, and to the
& XMEM.LIB library in the Dynamic C Function Reference
manual for more details.

2-8 ¢+ Introduction to Dynamic C Dynamic C 5.x

External Functions and Data
The keyword static cannot apply to functions.

The keyword extern is used in module headers (those enclosed in
BeginHeader and EndHeader comments. A variable or function may
already be declared extern in your a controller’s BIOS symbol table.
Otherwise, declare a variable extern if it is to be defined later in the
program or in another file.

Two files in the Dynamic C directory—LIB.DIR and DEFAULT .H—
contain lists of libraries that are needed for particular controllers. These
these files are used automatically, but they can be modified if necessary.

Dynamic C has no #include directive, but does have a #use directive.
Whereas the #include directive causes program text to be inserted in
place of the directive, Z-World’s #use directive does not cause text
insertion, but identifies a library from which functions and data may be
taken. The file DEFAULT . H contains various sets of #use directives, one
set for each controller Z-World offers.

Dynamic C compiles, links, and downloads directly to a Z-World control-
ler (or to a file). Dynamic C functions are not compiled separately and
then linked. There are no precompiled software libraries. Dynamic C uses
source-code libraries from which necessary functions are extracted during
compilation. Since there are no #include directives in Dynamic C,
source libraries make global variables and function prototypes available
with special headers such as the following.

/*** BeginHeader my_proc, my_func, my_var */
void my_proc(int j);
float my_func(float arg);
extern int my_var;

/*** EndHeader */

These headers are found throughout library source code. Such headers
must be created to make functions known to the Dynamic C compiler if
other libraries are created.

Technical Reference Introduction to Dynamic C ¢+ 2-9

Function-Calling Methods

Dynamic C provides a choice of two function-calling mechanisms. Two
keywords (and two directives), listed in Table 2-1, provide this choice.

Table 2-1. Function-Calling Methods

Key, Directive Description
usei X, Usethe IX register as a ‘frame reference pointer’ for
#usei x stack-based variables and arguments. See Chapter|6,
Using Assembly Language.
nousei X, Use the stack pointer (SP) as a ‘frame reference poirjter.
#nousei x This is the normal case.

It is generally more efficient to use the IX register. Do not use the IX
register as a frame reference pointer for functions that can be suspended
under the real-time kernel.

Subfunctions

Subfunctions allow often-used code sequences to be turned into an inline
“subroutine” within a C function. The subfunction nextbyte in the

following example,

static char nextbyte() ;
subfunc nextbyte: *ptr++;

.. .nextbyte() ;
.. .nextbyte() ;

can save ten or more bytes of code memory each time it is called.

Enumerated Types

Dynamic C does not have enumerated types.

Default Storage Class

Unlike traditional C compilers, the default storage class for local variables

IS static, not auto.

Attempts to write recursive or re-entrant functions will fail
/ if this default storage class is static. Recursive or re-

entrant functions require auto variables.

The default setting may be changed with the directive #class.

2-10 ¢ Introduction to Dynamic C

Dynamic C 5.x

Dynamic C and Z-World Controllers

Z-World controllers are based on the Z180 microprocessor, which has an

instruction set nearly identical to that of a Zilog Z80. The Z180 is a well-
established and popular microprocessor. It is a descendent of the original
780 microprocessor, but the Z180 also has the following on-chip “periph-
eral” devices.

* Dual 16-bit programmable timers
* Dual asynchronous serial communication ports
* A clocked serial communication port

* Dual DMA channels for high-speed data transfer between
memory and I/O devices.

The Z180 has a relatively efficient instruction set. At 9.216 MHz, many
instructions take about 1 microsecond. Floating-point arithmetic is
accomplished in software. Floating-point add, subtract and multiply take
about 100 microseconds with a 9.216-MHz clock. Division is somewhat
slower.

Physical Memory

Depending on the product and its jumper wiring, Z-World controllers can
address up to 512 kbytes of ROM, and 512 kbytes of RAM. It is often not
necessary to have memory chips this large on miniature controllers.
Typical SRAM chips have 32 or 128 kbytes.

Watchdog Timer

Programs sometimes fail or get stuck. Z-World controllers provide a
“watchdog” timer that will initiate a hardware reset unless the software
signals the timer periodically. A failed program will generally fail to “hit”
the watchdog timer. The watchdog timer can help the controller recover
from system hang-ups, endless loops and hardware upsets resulting from
electrical transients. The watchdog timer provides a natural way to recover
from most fatal software errors.

Real-Time Operations

Dynamic C includes two real-time function libraries, and extensions to the
C language to support real-time operations.

Refer to Chapter 7, Costatements, and to the Dynamic C
& Application Frameworks manual for more information about
the real-time kernels.

Technical Reference Introduction to Dynamic C ¢+ 2-11

Restart Conditions

Z-World embedded applications need to differentiate the causes of reset
and restart. Possible hardware resets are listed in Table 2-2.

Table 2-2. Hardware Resets

Regular reset | The system /RESET lineis pulled low and released.

Power Power drops below a threshold, and the supervisor chip
failure reset pulls/RESET low and causes areset.

Watchdog Software failed to “hit” the watchdog timer. It pulls
reset /RESET low and causes a reset.

In addition to these hardware resets, an application may cause a super
reset. Z-World’s super reset is a mechanism to initialize certain persistent
data in battery-backed RAM. A normal reset does not initialize these data,
but retains their values. A super reset always occurs when a program is
first loaded. Subsequent resets are normal resets, unless the software
performs a super reset intentionally.

Dynamic C includes the functions listed in Table 2-3 to differentiate the
various resets.

Table 2-3. Reset Functions

_sysl sSuper Reset This function detects whether a super reset was
requested. The function also manages protected
variables and calls the function chain
sysSupRst Chai n.

_sysl sPw Fai | This function determines whether the system
had a power failure just before restarting.

_sysl sWDTO This function determines whether the system
was reset by a watchdog timeout.

If these reset functions are to be used, call them before doing anything else
in the main function.

Dynamic C can generate two types of system reset. The function
sysForceReset causes a watchdog reset. The function
sysForceSupRst causes a super reset.

& See Appendix G, Reset Functions.

2-12 ¢+ Introduction to Dynamic C Dynamic C 5.x

I

Using Dynamic C

Technical Reference Using Dynamic C ¢+ 3-1

There are two varieties of the Windows version of Dynamic C: Standard
(DCW) and Deluxe (DCWD). The standard version is limited to 80 kbytes
of machine code, while the deluxe version can generate up to 512 kbytes of
code and 512 kbytes data, and fully supports extended memory.

To run Dynamic C under Windows, double-click the Dynamic C icon in
the Dynamic C program group or use one of the other Windows methods to
launch Dynamic C.

Installation

The Windows version of Dynamic C must be installed on a hard disk and
requires about 4 Mbytes of disk space. The PC must be running in 386
enhanced mode, using Windows 3.1, Windows 95, or Windows NT, on a
machine having a 386SX processor or better. At least 4 Mbytes of RAM
are required to run Dynamic C and there must be one free serial port to
communicate with the target controller.

Refer to the installation instructions in Chapter 1, Installing
Dynamic C.

Writing Programs

A Dynamic C text window is used to enter the program text line-by line.
Fragments of program text may be cut and pasted from one application to
another (for instance, from Microsoft WORD to Dynamic C) or from one
Dynamic C text window to another. Dynamic C allows text to be selected
and scrolled, and program files can be created and saved using the same
techniques as in other Windows programs.

3-2 + Using Dynamic C Dynamic C 5.x

Compiling Programs

Dynamic C provides several ways to compile programs, as shown in the
COMPILE menu.

ol 1o Target
Comle 1o Flke ChrieFa

Craate « 11 for Targailass Compla
Comple T Fike with = HT1 Hic Alt+ ek

Compile to Target

Dynamic C compiles, links and downloads machine code directly to a
target controller. If the controller has flash memory, Dynamic C places
code in flash memory. If the controller has EPROM, Dynamic C places
code in RAM. Dynamic C communicates with the controller through a PC
serial port. If the compilation is successful, Dynamic C enters run mode
and maintains communication with the target controller.

Compile to File

Dynamic C compiles the program to a file whose nature and format can be
selected in the compiler options dialog. No file is generated if compilation
errors occur. Note that a controller has to be connected to the PC; Com-
pile to File takes target information from the controller.

Compile to File with *.RTI File

Dynamic C allows a program to be compiled to an EPROM or a down-
loadable file without having a target controller present. Before compiling
programs this way, first create a Remote Target Information (.RTI) file for
the specific controller the programs will run on. To do this, select the
Create *.RTI File for Targetless Compile command from the Compile
menu.

Once a suitable RTI file has been created, the Compile to File with *.RTI
File command generates output files the same way Compile to File does.
All compiler options apply.

A dialog box prompts which RTI file to open. When Create *.RTI File for
Targetless Compile is selected, the specific target controller must be
connected.

It is essential that the RTI file is created with a target

/ controller identical (board type, BIOS, memory size,
jumper settings, etc.) to the controller on which programs
compiled with the RTI file will run.

Technical Reference Using Dynamic C ¢ 3-3

Compiler Options

The Compiler selection on the OPTIONS menu provides many options.

Compiler Oplions

Hen-Time Chacking | We'mraing Hesporis
(=] marmy indices W A
mﬁunlum |l Sunnus Only
maﬂh |l Monn

I'ype Chackng
—Dijoct Fike Opdion
e]F‘luluhrpr
L mnin HEX Filp Alen]Uiﬂ'l
| Poisiny

~ Fibe Typo b “Cosmpile o File®
) Cods with FIREG [= HIN]

Optimizs For

il.‘\-ilrn

"1 Bl e I Spnnd

B dor dosminsd E
) Codn with no B80S & BEF) Help | Cascal I

Several compiler options affect the Compile to File and the Compile to
File with *.RTI File commands.

Code with BIOS (*.BIN)

When this option is selected, the Compile to File command generates an
EPROM (.BIN) file containing the program, the BIOS of the target
controller, and the library functions contained in the BIOS. If the Create
HEX file also compiler option is selected, the Compile to File command
generates an Intel hex format file ((HEX) in addition to the .BIN file.

This is how an EPROM file is created. In most cases, either the .BIN or
the .HEX format will work with EPROM programmers.

Null device

When this option is selected, the Compile to File command generates no
output. This option allows very fast compilation and is useful just to

(1) perform syntax checking, (2) perform type checking or (3) get the sizes
of each code and data segment. The memory mapping scheme is identical
to compiling with code with BIOS.

.DLP for download

When this option is selected, the Compile to File command generates a
downloadable program file (.DLP) to be used by the Z-World download
manager (DLM). When choosing this option, be prepared to enter certain
parameters generated by the DLM in a dialog box that appears after
Compile to File is clicked.

3-4 + Using Dynamic C Dynamic C 5.x

The DLM must be resident in any controller that will receive the
downloadable file.

Q N Refer to Chapter 9, Remote Download, for details.

Code without BIOS (*.BPF)

When this option is selected, the Compile to File command generates a
.BPF file without the BIOS libraries. This option is included for backward
compatibility only.

Debugging Programs

Once a program has been compiled successfully with a target controller
connected, Dynamic C enters run mode, or debug mode. Modern sym-
bolic debuggers, such as Dynamic C’s debugger, make debugging rela-
tively easy. There are two general methods; expect to use a combination of
the two.

1. Make the program report its behavior by including debugging code—
such as calls to printf—in the program. This is useful, but it is often
not sufficient, especially if the print£ contents scroll off the screen
too fast. Dynamic C, however, offers an option to save all the content
printed to the STDIO window into a file for later examination. This
allows the programmer to save a huge file of debug information and
then use another program on the PC to analyze the contents.

2. Probe and test the program as it runs. Unfortunately for debugging,
programs run faster than humans do. Addressing this difference,
Dynamic C lets the program run at a speed amenable to testing. Slow it
down here, make it run fast there, and stop whenever needed to
examine its state.

Dynamic C provides a variety of windows, listed in Table 3-1, to monitor a
program’s state.

Table 3-1. Dynamic C Monitoring Windows

Watch window Evauates variables, expressions, and functions

STDIO window Callstopri ntf display inthe STDIO window

Assembly window | Examines, or step, the compiled code

Register window Shows Z180 register values, past and present

Stack window Shows the (top 8 bytes of the) processor stack, past
and present

Technical Reference Using Dynamic C ¢ 3-5

The assembly, register, stack, STDIO, and watch windows are all scrolling
windows. The windows can be scrolled to view the history of contents of
registers, stack and watch expressions of the last few steps. This feature is
very useful to show how variables, registers or the stack change during
execution of the program.

An important aspect of the Dynamic C debugger is that it is symbolic.
This means that the executing program is linked to source code. The part
of the program that is executing is highlighted in the source-code window.
When expressions, variables, and functions are evaluated, they are
evaluated in C, using the names in the application, and normal integer,
floating, and character representations of constants apply. The execution
of the program can also be viewed at the machine level.

Polling

Under normal debugging conditions, Dynamic C monitors the activity on
the target controller. The controller is interrupted every 100 milliseconds.
This is called polling. If your the application has very tight timing
requirements, these interrupts could cause the application to fail. Dynamic
C allows polling to be enabled or disabled at the programmer;s option.

There are three commands on the RUN menu.

Run (with polling),

Run w/ No Polling, and

Toggle Polling (allows user to control polling).

Single Stepping

Often there is a need simply to observe the program execute, statement by
statement. There are two commands on the RUN menu) for single step-
ping.

Trace into (allows descent into function calls), and

Step over (prevents descent into function calls).

An execution cursor highlights the current source statement (or assembly
instruction, if the assembly window is being used).

When one of the two single-stepping commands is clicked, the current
statement executes, debugging windows are updated, and the execution
cursor advances to the next statement in the execution sequence. To
examine code in greater detail, the assembly window may be activated to
show the compiled code in assembly language format.

This option may not be needed if the source code is already in assembly
language. Single stepping through assembly code is instruction by
instruction. The machine state (registers and stack) can also be displayed
independently at any time.

3-6 + Using Dynamic C Dynamic C 5.x

= Assembly |v|‘
2484 ES push hl +
2485 CD272E call run_every
2488 (1 pop he
2489 C1 pop bec
248a EF rst 28h]
248b 210500 1d hl,0005
248e ES push hl
248f 210460 1d hl,0004
2492 ES push hl
2493 CD272E call run_every
2496 C1 pop be

Disassembler

Besides displaying the assembly code at the execution point, Dynamic C
also allows code to be dissembled independently of the execution point.
The Disassemble at Cursor option of the INSPECT menu (CTRL-F10)
disassembles the machine code that represents the code at the screen
cursor. This feature allows the compiled code of statements to be pre-
viewed long before the code is executed. Another command on the
INSPECT menu, Disassemble at Address (ALT-F10), allows the machine
code to be disassembled at any address (except at addresses in the BIOS
area). This feature is especially handy to preview code generated for
library functions.

Combined with the scrolling register, watch and stack windows, the
disassembler features let the programmer trace the history of the code and
know exactly which machine instruction caused what changes affer the

fact.
Break Points

At times, there may be a need to run a program at full speed and then stop
at break points. These break points can be placed (and removed) at run
time anywhere in the source code. The line of code is highlighted where a
break point has been inserted in the source cose.

There are hard break points and soft breakpoints. Interrupts are disabled
at hard break points. Interrupts are restored to their former state when
execution resumes after a hard break point. Soft break points do not affect
the interrupt state. The interrupt flag may be toggled independently using
the Toggle interrupt command on the RUN menu, or by using EI and DI
in the watch window (see below). The message bar at the bottom of the
Dynamic C window reports the current interrupt state. The 1 ££ in the
watch window may also be used to determine the interrupt state.

Technical Reference Using Dynamic C ¢ 3-7

Watch Expressions

Watch expressions allow the programmer to obtain the value of a variable,
to evaluate an arbitrary expression, or to invoke a function out of se-
quence. To do this, select Add/Delete Watch Expressions from the
INSPECT menu (or press CTRL-W). This invokes the watch expression
dialog box, where an expression for evaluation is entered. If the cursor is
placed over a variable name, or some text in the source file is highlighted,
this text will appear in the dialog box when the dialog box is opened. The
result of a watch expression will appear in the watch window after the
dialog box closes.

A watch expression may be any valid C expression, including assignments,
function calls, and preprocessor macros (do not type a semicolon after the
expression). For example, the expression

MyVar = MyFunc(8)

would call the function MyFunc with the value 8 and assign the return
value to the variable MyVar (assuming MyVar and MyFunc have been
defined somewhere in the compiled program). A simpler watch expression
would include only the name of a variable and return its value.

There are two basic ways to work with the watch dialog.

1 Immediate Evaluation. Enter an expression in the dialog box edit line
and click Evaluate. The expression is evaluated only once, with the
results displayed immediately in the watch window.

2 Repeated Evaluation. Enter an expression in the watch line and click
Add to top. The expression will be added to the top of the watch list.
(Watch list entries are deleted using the Delete from top button.) All
the entries in the watch list are evaluated every time the program stops
at a break point, after single-stepping, and after the stop command
(CTRL-2)>. A watch window update can be forced using the Update
Watch Window command «CTRL-U>.

The keyboard shortcut <CTRL-W) allows a variable to be evaluated very
quickly. Just position the text cursor in the variable, type <CTRL-W» and
hit <ENTER>.

The ability to evaluate expressions and function calls periodically and at
will is a very powerful facility. Besides providing the ability to monitor
the program state, this allows the program to be changed.

The watch dialog can be used to set the value of variables. Functions
called via the watch dialog can be very effective (and possibly dangerous).
For example, the PLCBus may be reset this way, or events can be simu-
lated by changing the values at hardware inputs and outputs. A sophisti-
cated programmer might even write functions meant only to be executed in
the watch dialog for debugging purposes.

3-8 ¢+ Using Dynamic C Dynamic C 5.x

Returning to Edit Mode

After debugging, it is possible to continue editing the source code. Click
on the Edit mode in the EDIT menu. The keyboard shortcut is <F4».

Creating Standalone Programs

As mentioned previously under Compiling, EPROM files can be created
using the Compile to File command. Generally, a program in a Z-World
controller will run by itself, once the controller is disconnected from the
PC running Dynamic C and is reset (for example, by turning power off and
then on). Check to make sure that the controller in run mode. The
controller manual provides detailed instructions.

Controller with Program in EPROM

Once an EPROM has been burned, place it in the controller’s EPROM
socket. The program will start running when the controller resets.

Controller with Program in Flash Memory

Dynamic C places the program code in flash memory when the compila-
tion is done to a controller with flash memory. Therefore, the program is
nonvolatile. The program will start running as soon as the controller
restarts in run mode.

Controller with Program in RAM

Dynamic C places the program in RAM when the compilation is to a
controller with EPROM. The program will start as long as the controller’s
RAM continues to get power after it is disconnected from Dynamic C and
restarted in run mode.

Controllers that have no backup battery will lose the
/ contents of their RAM if they are disconnected from a
power source.

Technical Reference Using Dynamic C ¢ 3-9

Help

Dynamic C provides three forms of on-line help. The first, a standard
Windows help system, contains descriptions of the available menus,
keystrokes, and dialog box options, as well as other information about
using Dynamic C.

Dmamis: © Halp
Eile Edit Boaokmark Help

Jomosts [Goovch | fiocs ooy [o [- JHEEE

Dynamic C Help Contents

Overview - What is availsble in orelne belp
Retvado pay i - How Do wss Dmeami; O
Keystrohes - Keysirokes recognized by Diynamio C

Diplog Bomeg - Cptions and conbrols availatile on CrRmamic
C dealing beoeas

Wiindows - Windoas usetul for development in e
Crymarmic erparonment

Function Lookup

The second form of on-line help provides information about the use of
Dynamic C library functions. All library functions have descriptive
headers that are made known to Dynamic C at startup. This function
header is displayed when help regarding the function is requested.

= Function LookuptInsert

|Bruwse I | 0K I | Cancel | | Help || Print | ® View Only
O Insert Call

Function Description:

strepy {STRING.LIB>

[

SYNTAX: char xstrecpy(char xdst, char xsrc);
KEYWORDS: string

DESCRIPTION: Copies string "src¢” to string "dst™. Copi
{(the null).

RETURN VALUE: Pointer to "dst”.

3-10 ¢+ Using Dynamic C Dynamic C 5.x

The advantage to the lookup facility is that it is quick. With additional
keystrokes, it is possible to open the library file and peruse the source code
for the function in question. But this takes extra time.

If a function name in a program is selected , or just clicked on, the help
command (<CTRL-H)> for short) will display the function header. If the
function name is unknown to Dynamic C, a library lookup dialog will
appear. Click Lib Entries to browse all the library functions known to
Dynamic C.

Sy | St i G ADRCEE 1 YUBSEEYEXTD LA
_Eewry_Bankidig is CUBCSE LB EEEYELTD LIE
bemy ban ki i COEMCEHTYLIEL SRR YREXTID LIK
_Skewy_boclean m CYCEETLBSEEY LIH
Sepy_dscout in CLOCRIENLINLEEYEXTROLE
By st in GOS0 | LEN GOEY LB
Sy gl pepet b O DG GRS LIE SR EXTIDLIB

[ox | | twip | | casem |

Browsing has two benefits.
1. Review available functions.

2. Quick access to the function header, including its prototype. This
provides a quick reminder how to call the function.

An additional benefit is that a function prototype can be copied from the
help window and used it to form a function call. This saves typing and
time. (Remember that any text in a library help window can be copied and
then pasted elsewhere.)

Technical Reference Using Dynamic C ¢ 3-11

Function Assistance

The third form of help is a variant of the function “lookup.” Click on the
Insert Call button in the lookup dialog box for the function assistant to
place the function call in the program. The function assistant then places a
prototypical call in the program once the OK button is clicked.

However, every individual function parameter can be specified in the
dialog. The function assistant reminds the programmer what types the
parameters have and the order of the parameters. The function assistant in
the following example shows that parameter 1 is named dst, a commonly
used abbreviation for “destination,”and that it is a char* (pointer to
char). The word “comment” in the example is the expression that
replaces parameter 1 in the function call.

Furnclion Lo

[Baowan]| [Tor] [[Sonsar] [rop | [Trmmi] ' e Oy
Fusclssa Duzcnphion 'ﬂ.-'lllllﬂ Call
stropy CETRING.LIE: ki

EVMTAK: char wetrcpylchar wdat. char ware):
EEYWORDS: string

DESCRIFTION: Copies string “sro” to string “dst”. Copios|s]

=1

|Farmmeinr # || E Mami m Dascnplion |dr't
|comment b
Espe in Call 5| Toes [Shar =
[mecriphis: "I I i
i
&
"'I I L

3-12 + Using Dynamic C Dynamic C 5.x

Dynamic C ENVIRONMENT

Technical Reference Dynamic C Environment ¢+ 4-1

Dynamic C can be used to edit source files, compile programs, and run
programs or choose options for these activities. There are two modes: edit
mode and run mode. The run mode can be also called the debug mode.
Compilation is, in effect, the transition between the edit mode and the run
mode. Developers work with Dynamic C by editing text, issuing menu
commands (or keyboard shortcuts for these commands), and viewing
various debugging windows.

Programs can compile
 directly to a target controller,
* to a file for burning an EPROM

* to a file meant for downloading to a controller in which the
Z-World Download Manager resides, or

* to a file meant for downloading to controller RAM.

In order to compile or run a program, a controller must be connected to the
PC or an RTI (Remote Target Information) file for compilation must exist.

Dynamic C includes editing options, compiler options, and memory
options. Most of the options are in the OPTIONS menu.

Details about how to work with Windows have been omitted intentionally.

Refer to the Microsoft Windows Users Guide for details
& regarding the use of Windows. Dynamic C follows Windows
software standards very closely.

Editing

Once a file has been created or has been opened for editing, the file is
displayed in a text window. It is possible to open or create more than one
file and one file can have several windows. Dynamic C supports normal
Windows text editing operations.

Use the mouse (or other pointing device) to position the text cursor, to
select text, or to extend a text selection. Scroll bars may be used to
position text in a window. Dynamic C will, however, work perfectly well
without a mouse, although it may be a bit tedious.

It is also also possible to scroll up or down through the text using the arrow
keys or the PageUp and PageDown keys or the Home and End keys. The
left and right arrow keys allow scrolling left and right.

4-2 + Dynamic C Environment Dynamic C 5.x

Arrows Use the up, down, left and right arrow keys to move the cursor in
the corresponding direction.

The CTRL key works in conjunction with the arrow keys this way.

CTRL-Left Move to previous word
CTRL-Right Move to next word
CTRL-Up Scroll up one line (text moves down)

CTRL-Down Scroll down one line
Home Moves the cursor backward in the text.

Home Move to beginning of line
CTRL-Home Move to beginning of file
SHIFT-Home Select to beginning of line
SHIFT-CTRL-Home Select to beginning of file

End Moves the cursor forward in the text.

End Move to end of line
CTRL-End Move to end of file
SHIFT-End Select to end of line
SHIFT-CTRL-End Select to end of file

Sections of the program text can be “cut and pasted” (add and delete) or
new text may be typed in directly. New text is inserted at the present
cursor position or replaces the current text selection.

The Replace command in the EDIT menu is used to perform search and
replace operations either forwards or backwards.

Menus

Dynamic C has eight command menus,

FILE EDIT COMPILE RUN
INSPECT OPTIONS WINDOW HELP

as well as the standard Windows system menus. An available command
can be executed from a menu by clicking the menu and then clicking the
command, or by (1) pressing the ALT key to activate the menu bar, (2)
using the left and right arrow keys to select a menu, (3) and using the up or
down arrow keys to select a command, and (4) pressing ENTER. It is
usually more convenient to type keyboard shortcuts (such as <CTRL-H>
for HELP) once they are known. Pressing the ESC key will make any
visible menu disappear. A menu can be activated by holding the ALT key
down while pressing the underlined letter of the menu name (use the space
bar and minus key to access the system menus). For example, type <ALT-F>
to activate the FILE menu.

Technical Reference Dynamic C Environment ¢+ 4-3

File Menu
Click the menu title or press <ALT-F» to select the FILE menu.

l! Edit Compile

(R,

B=H
Sawe As
Cose

Prind Priagiews...
Prind..
Print Safug...

Exit AltiFd

The FILE menu commands and their functions are described below.
New

Creates a new, blank, untitled program in a new window.

Open

Presents a dialog in which to specify the name of a file to open. Unless

there is a problem, Dynamic C will present the contents of the file in a text
window. The program can then be edited or compiled.

File s [Hrescinring E
Fc | etdcibiiennpies

bl o 13 = e # Ii]
chdamnn. o N = k] W

il o e o2 - P samplas -
dume_rie] mnsc

el pul [=

Igfinzhc O cpic

pilssh ¢ £ dmmirsll ||

o i + +

Lt Pl o Wi vy
|EuumF|Iur.|:"'|:] Iil [=e 4|

To select a file, type in the desired file name, or select one from the list.
The file’s directory may also be specified.

A Refer to the Microsoft Windows User Guide for more
information.

4-4 + Dynamic C Environment Dynamic C 5.x

Save

The Save command updates an open file to reflect the latest changes. If
the file has not been saved before (that is. the file is a new untitled file), the
Save As dialog will appear.

Use the Save command often while editing to protect against loss during
power failures or system crashes.

Save As

Allows a new name to be entered for a file and saves the file under the new
name.

R RN R R R AR
g o -
|i | e hdeibl jenmplne

£3 = el " |—I:l""|
| = dichiky] |
| e | [t
2] mnac
£ couloke
£1 epic
£ tevsivall .
+ iy +
Saen File &8 Typa: [
|E|:||.ln|-F|Inr.|:"|:] Iﬁ |=t: _ﬂ

Close

Closes the active window. The active window may also be closed by
pressing «CTRL-F4» or by double-clicking on its system menu. If there is
an attempt to close a file before it has been saved, Dynamic C will present
a dialog similar to one of these two dialogs.

Demammis ©

ﬁ Sawe Changes tn 'CAPCHVSAMPLE S\DEMO_RT.C'7

N T T

Demamis ©

9 Saee changes o 'Unifled*?

[E=] (o | [conca]

Technical Reference Dynamic C Environment ¢+ 4-5

The file is saved when Yes (or type “y”) is clicked. If the file is untitled,
there will be a prompt for a file name in the Save As dialog. Any changes
to the document will be discarded if No is clicked or “n” is typed. Cancel
results in a return to Dynamic C, with no action taken.

Print Preview...

Shows approximately what printed text will look like. Dynamic C
switches to preview “mode” when this command is selected, and allows
the programmer to navigate through images of the printed pages.

=-‘ Dynamic C Deluxe 5.00

Eile Edit Compile Bun Inspect Options Window Help
Eﬂ Page 1 Closel

DEHD RY.C

Bun on wny 2-%oild Gowrd
bxmonatiation of icwl-Eime teinel

Beul time teinel timer acheduling culla

iequest [unaigned nka3ll -+ tequest thub o baal be runoon iesumed
1un every junsigned nkaat. unaigred nkrelal == achedule every nkiels Eiets
1un afke: junsigned nkaat. unaigned lang nkielal == achedule afees nkiets

have puaad

tun wt | unaigned ntwal. ik “kimerl - achedule sk or wftes the 48 Bk
Einc poinked to by bimes

auapend [unaigned nkiclal -- call Tion o Bdaloonly wikh nbicta 40 234
Blacta tunning untrl nbicta puaaed.
Shen nkicta chengea to weio. twal 13 acheduled
wguin. Other acheduling levery. wfees wel
13 upduted while twat 13 blocted wnd Eaumes

| auspenaion hua Eimed out. [F nkicta

16, khen ka3t 13 skopped unkil an

Tarce 1EquEsta Ib 3t iba wgein.

un levery. afeer. akl a0 requesk.

ik un Bimen [1o== eall Tion neeviuge ok 1R300 Eimes

ind.

*r
luac skl 11k
i *"*8egin Globula iewl Eime teinel 0

ot twatB i taatl [bwat [kst T bwatd 1 Eaats 1 bacignd |12
ine | ~Fewat [0 [1-1twatl tuatl w3l tuat) buatd tuatd bucignd|:

Ehat comment Tlag:
ldeline WTAERE 7

ldeline TAEXD 0
ldeline TAEXI |
ldeline TAEED 2
ldeline TAEX] 1
ldeline TAEEA A
e T ome TaEEL

4-6 + Dynamic C Environment Dynamic C 5.x

There are several icons on the toolbar used to view the pages to be printed.

Go forward or backward through pages
Page(s) being displayed Close button —

/_clickwhendone
BR|EE Page1

\ \ Print button (same as
See two pages at once ;

Print command)

See one page at a time
Print...

Text can be printed from any Dynamic C window. There is no restriction
to printing source code. For example, the contents of the assembly
window or the watch window can be printed. Dynamic C displays the
following type of dialog when the Print command is selected.

— Priril
Prentii: Dhrvii 1t Prvi it §HF Lasas Jat 551581
B PE ww gmosu fhpSpe (LFT20)
——
o

|) Egheolinn

| | | |
Primt Ganlity. |68 dipi [%] Copes: |1 |

[l Frint s Fila (=] Coliai Copips

i Fane

At present, printing all pages is the only option, even though there are two
other buttons.

As many copies of the text as needed may be printed. If more than one
copy is requested, the pages may be collated or uncollated.

If the Print to File option is selected, Dynamic C creates a file (it will ask
for a pathname) in the format suitable to send to the specified printer. (If
the selected printer is a PostScript printer, the file will contain PostScript.)

To choose a printer, click the Setup button in the Print dialog, or choose
the Print Setup... command from the FILE menu.

Technical Reference Dynamic C Environment ¢+ 4-7

Print Setup...
Allows choice of which printers to use and to set them up to print text.

The Print Setup command produces the following type of dialog box.

~Prenan
'?‘ Drlael Frli)
(rurmmnily HF Lnoss Jek h50 00510 W2 'S onoomnnefhph-pe (LF T

: Lpcihe Prminr

il

HF Lamardal 550551 M FE o amasifhpSps (LFT3) Lﬂ

~ Cnpeialinon “Fapur
_ﬁ‘l ¥ Pafirail Sign: |Loner € 12 11in |8
) Landicnpn Do |1rm:,l?' |-ﬂ

There is a choice between using the computer system’s default printer or
selecting a specific printer. Depending on the printer selected, it may be
possible to specify paper orientation (portrait, or tall, vs. landscape, or
wide), and paper size. Most printers have these options. A specific printer
may or may not have more than one paper source.

The Options button allows the print options dialog to be dispalyed for a
specific printer. The Network button allows printers to be added or
removed from the list of printers.

Exit
To exit Dynamic C. When this is done, Windows will either return to the

Windows Program Manager or to another application. The keyboard
shortcut is <ALT-F4>.

4-8 ¢+ Dynamic C Environment Dynamic C 5.x

Edit Menu
Click the menu title or pressing <ALT-E> to select the EDIT menu.

Hedo Shilfteakt +Bisp
ot Chrile
oy Chri4 i
Pasie Gl
Fiiwil.. F5

s Bl Fh

Firsdl M=t ShifteFs
Gl Chrliiz
Prawious Error Chel+P
Hexd Error Chrile N
Edit Mode 4

The EDIT menu commands and their functions are desribed here.
Undo

Undoes recent changes in the active edit window. This command may be
repeated several times to undo multiple changes. The amount of editing
that may be undone will vary with the type of operations performed, but
should suffice for a few large cut and paste operations or many lines of
typing. Dynamic C discards all undo information for an edit window when
the file is saved. The keyboard shortcut is <ALT-backspace>.

Redo

Redoes modifications recently undone. This command only works
immediately after one or more Undo operations. The keyboard shortcut is
<ALT-SHIFT-backspace>.

Cut

Removes selected text from a source file. A copy of the text is saved on
the “clipboard.” The contents of the clipboard may be pasted virtually
anywhere, repeatedly, in the same or other source files, or even in word-
processing or graphics program documents. The keyboard shortcut is
<CTRL-X>.

Copy

Makes a copy of selected text in a file or in one of the debugging windows.
The copy of the text is saved on the “clipboard.” The contents of the
clipboard may be pasted virtually anywhere. The keyboard shortcut is
<CTRL-C>.

Technical Reference Dynamic C Environment ¢+ 4-9

Paste

Pastes text on the clipboard as a result of a copy or cut (in Dynamic C or
some other Windows application). The paste command places the text at
the current insertion point. Note that nothing can be pasted in a debugging
window. It is possible to paste the same text repeatedly until something
else is copied or cut. The keyboard shortcut is <CTRL-V>.

Find...

Finds specified text. The following dialog box appears in response to the

Find command.

Find: | ewiich

[From curs
H Canp peaninm
L Bisrvestam

||:m|||-u.=| 4:-:.||

Type the text to be found in the “Find” box. In this example, the Find
command (and the Find Next command, too) will find occurrences of the
word “switch.” If “case sensitive” is clicked, the search will find occur-
rences that match exactly. Otherwise, the search will find matches having
upper- and lower-case letters. For example, “switch,” “Switch,” and
“SWITCH” would all match. Ifreverse is clicked, the search will occur in
reverse, that is, the search will proceed toward the beginning of the file,
rather than toward the end of the file. Use the “From cursor” checkbox to
choose whether to search the entire file or to begin at the cursor location.
The keyboard shortcut for Find is <F5>.

Replace...

Replaces specified text. The following dialog box appears in response to
the Replace command.

e]

Faned reg |

Change i [reg? |

l Feom oarsor [Case sonsithe
_—lﬁnlnr.hnnnnl'.,l I__H.H.mru:n
_I b premp

Lok | [coamsesn | el | | comea |

4-10 + Dynamic C Environment Dynamic C 5.x

Type the text to be found in the “Find” text box. Then type the text to
substitute in the “Change to” text box. In this example, the replace
command will find an occurrence of the word “reg7” and replace it with
“reg9.” If “Case sensitive” is selected, the search will find an occurrence
that matches exactly. Otherwise, the search will find a match having
upper- and lower-case letters. For example, “reg7,” “REG7,” and “Reg7”
would all match.

If reverse is clicked, the search will occur in reverse, that is, the search will
proceed toward the beginning of the file, rather than toward the end of the
file. The entire file may be searched from the current cursor location by
clicking the “From cursor” box, or the search may begin at the current
cursor location.

The “Selection only” checkbox allows the substitution to be performed
only within the currently selected text. Use this in conjunction with the
“Change All” button. This box is disabled if no text is selected.

Normally, Dynamic C will find the search text, then prompts for whether to
make the change. This is an important safeguard, particularly if the
“Change All” button is clicked. If “No prompt” is clicked, Dynamic C will
make the change (or changes) without prompting.

The keyboard shortcut for ‘Replace’ is <F6>.
Find Next

Once search text has been specified with the Find or Replace commands,
the Find Next command (¢<SHIFT-F5> for short) will find the next occur-
rence of the same text, searching forward or in reverse, case sensitive or
not, as specified with the previous Find or Replace command. If the
previous command was Replace, the operation will be a replace.

Goto...

Positions the insertion point at the start of the specified line. The follow-
ing dialog is displayed when the Goto command is issued.

Leni Membai

[ox] [coment]

Type the line number (or approximate line number) to which to jump.
That line, and lines in the vicinity, will be displayed in the source window.

Technical Reference Dynamic C Environment ¢+ 4-11

Previous Error

Locates the previous compilation error in the source code. Any errors will
be displayed in a list in the message window after a program is compiled.
Dynamic C selects the previous error in the list and positions the offending
line of code in the text window when the Previous Error command
(<CTRL-P> for short) is made. Use the keyboard shortcuts to locate errors
quickly.

Next Error

Locates the next compilation error in the source code. Any errors will be
displayed in a list in the message window after a program is compiled.
Dynamic C selects the next error in the list and positions the offending line
of code in the source window when the Next Error command («<CTRL-N»
for short) is made. Use the keyboard shortcuts to locate errors quickly.

Edit Mode

Switches Dynamic C back to edit mode from run mode (also called debug
mode). After a program has been compiled or executed, Dynamic C will
not allow any modification to the program unless the Edit Mode is
selected. The keyboard shortcut is <F4».

Compile Menu
Click the menu title or press <ALT-C» to selects the COMPILE menu.

I st iptions 'Window Holp
Cooim el 1o Target
Commle To Flke GhrltF3

Craate = BT HE: tor Targaiiass Complia
Comple to Fike with = K11 FHle Al Chrie

There are three ways to compile.
1. Directly to a target controller.

2. To a file, with the target controller connected to Dynamic C through a
PC serial port.

3. To a file, with no target controller connected. This would be a
targetless compilation. To compile this way, create a Remote Target
Information (.RTT) file for the intended controller.

Use Compile to File to generate an EPROM file or a downloadable
program file. Compiler options (in the OPTIONS menu) specify most
code-generation, type-checking and warning options during compilation.
In particular, compiler options specify the file type being compiling to a
file.

4-12 + Dynamic C Environment Dynamic C 5.x

Table 4-1 summarizes the file types.

Table 4-1. Dynamic C Compile to File File Types

Code with BIOS The Compile to File or Compile to File with
(*.BIN) * RTI File command generates an EPROM

(- BI'N) file. If the Create HEX file also
compiler option is selected, the command also
generates an Intel hex format file (. HEX).

Null device The Compile to File or Compile to File with
* RTI File command generates no output. This
option allows very fast compilation and is useful
to (1) perform syntax checking, (2) perform type
checking or (3) get the sizes of each code and
data segment.

. DLP for download The Compile to File or Compile to File with
* RTI File command generates a downloadable
program file (. DLP) to be used by the Z-World
download manager (DLM).

Code without BIOS This option isincluded for backward compati-
(*. BPF) bility only and is used for downloading programs
to RAM.

The Memory Options command (in the OPTIONS menu) affects the
placement and allocation of code and data in the target controller’s
memory. The Serial Options command (in the OPTIONS menu) specifies
the speed and mode when the generated code is uploaded from the PC to
the target.

For more details, refer to the OPTIONS menu discussion
S later in this chapter.

The COMPILE menu commands and their functions are described here.
Compile to Target

Compiles program and loads it in target controller’s memory. Dynamic C
automatically determines whether the target has on-target RAM, flash
EPROM or development-board RAM, and compiles with the appropriate
memory map. The controller’s reference manual describes which platform
is available for the target being used. Any compilation errors are listed in
the message window that is activated automatically. Otherwise, the
program is ready to run and Dynamic C is in run (or debug) mode. The
program will start running without a pause if #nodebug precedes the main
function. (Dynamic C will also lose contact with the target.) The key-
board shortcut is <F3».

Technical Reference Dynamic C Environment ¢+ 4-13

Compile to File

Compiles program to a file. A target controller must be connected because
Dynamic C takes configuration information from the target. Any compila-
tion errors are listed in the message window that is activated. Otherwise,
Dynamic C generates a file according to the compiler options that have
been selected. The keyboard shortcut is «<CTRL-F3>.

Create * .RTI File for Targetless Compile

It is possible to compile without a target controller present if a Remote
Target Information (* .RTI) file for the intended controller is created. The
Compile to File with *.RTI File command may be used once that has been
done.

A target controller is still needed to create the * .RTT file. The intended
target must be identical to the controller used to create the * .RTT file.

Compile to File with * .RTI File

Compiles program to a file using * .RTT file created. Any compilation
errors are listed in the message window that is activated. Otherwise,
Dynamic C generates a file according to the compiler options that have
been selected. The keyboard shortcut is <ALT-CTRL-F3>.

Run Menu
Click the menu title or press <ALT-R> to select the RUN menu.

Humn wa Mo Polling AltaFY
Hesed Progrosm Chrd k2
Trace il F7
Step over FB

Toggke Braakpont F2
Toqagke Hard Broakpoind AdtaF?
Togok Intarrupt Fleg — Chrisl
Tk Podling G+
Aesel Tar el Clri+

The RUN menu commands and their functions are described here.
Run

Starts program execution from the current breakpoint. Registers are
restored, including interrupt status, before execution begins. The keyboard
shortcut is <F9>.

4-14 + Dynamic C Environment Dynamic C 5.x

Run w/ No Polling

This command is identical to the Run command, with an important
exception. When running in polling mode (F9), the development PC polls
or interrupts the target system every 100 milliseconds to obtain or send
information about target break points, watch lines, keyboard-entered target
input, and target output from printf statements. Polling creates interrupt
overhead in the target, which can be undesirable in programs with tight
loops. The Run w/ No Polling command allows the program to run
without polling and its overhead. (Any print£ calls in the program will
cause execution to pause until polling is resumed. Running without polling
also prevents debugging until polling is resumed.) The keyboard shortcut
for this command is <ALT-F9>.

Stop

The Stop command places a hard break point at the point of current
program execution. Usually, the compiler cannot stop within ROM code
or in nodebug code. On the other hand, the target can be stopped at the
rst 028h instruction if rst 028h assembly code is inserted as inline
assembly code in nodebug code. However, the debugger will never be
able to find and place the execution cursor in nodebug code. The
keyboard shortcut for this command is <CTRL-Z>.

Reset Program

Resets program to its initial state. The execution cursor is positioned at
the start of the main function, prior to any global initialization and variable
initialization. (Memory locations not covered by normal program initial-
ization may not be reset.) The keyboard shortcut for this command is
<CTRL-F2>.

The initial state includes only the execution point (program

/ counter), memory map registers, and the stack pointer. The
Reset Program command will not reload the program if
the previous execution overwrites the code segment.

Trace Into

Executes one C statement (or one assembly language instruction if the
assembly window is displayed) with descent into functions. Execution will
not descend into functions stored in ROM because Dynamic C cannot
insert the required break points in the machine code. If nodebug is in
effect, execution continues until code compiled without the nodebug
keyword is encountered. The keyboard shortcut is <F7>.

Technical Reference Dynamic C Environment ¢+ 4-15

Step over

Executes one C statement (or one assembly language instruction if the
assembly window is displayed) without descending into functions. The
keyboard shortcut is <F8>.

Toggle Breakpoint

Toggles a regular (“soft”) break point at the location of the execution
cursor. Soft break points do not affect the interrupt state at the time the
break point is encountered, whereas hard break points do. The keyboard
shortcut is <F2>.

Toggle Hard Breakpoint

Toggles a hard break point at the location of the execution cursor. A hard
break point differs from a soft breakpoint in that interrupts are disabled
when the hard break point is reached. The keyboard shortcut is <ALT-F2>.

Toggle Interrupt Flag
Toggles interrupt state. The keyboard shortcut is <CTRL-D.
Toggle Polling

Toggles polling mode. When running in polling mode (F9), the develop-
ment PC polls or interrupts the target system every 100 milliseconds to
obtain or send information regarding target break points, watch lines,
keyboard-entered target input, and target output from print£ statements.
Polling creates interrupt overhead in the target, which can be undesirable
in programs with tight loops.

This command is useful to switch modes while a program is running. The
keyboard shortcut is «<CTRL-Op.

Reset Target

Tells the target system to perform a software reset including system
initializations. Resetting a target always brings Dynamic C back to edit
mode. The keyboard shortcut is <CTRL-Y>.

Inspect Menu
Click the menu title or press <ALT-) to select the INSPECT menu.

Jikiinini .'-I. Lt i II')
Ciriaw
Clear Watch Wirdows

Updats Watch Windows Clrkl)

Disassemble at Cursor ClrlsFi0
Disassemble al Address AH&F10
Dygmps at Auddress

4-16 + Dynamic C Environment Dynamic C 5.x

The INSPECT menu provides commands to manipulate watch expressions,
view disassembled code, and produce hexadecimal memory dumps. The
INSPECT menu commands and their functions are described here.

Add/Del Watch Expression
This command provokes Dynamic C to display the following dialog.

— walch Expressions

HH

This dialog works in conjunction with the watch window. The text box at
the top is the current expression. An expression may have been typed here
or it was selected in the source code. This expression may be evaluated
immediately by clicking the “Evaluate” button or it can be added to the
expression list by clicking the “Add to top” button. Expressions in this list
are evaluated, and the results are displayed in the watch window, every
time the watch window is updated. Items are deleted from the expression
list by clicking the “Del from top” button.

An example of the results displayed in the watch window appears below.

Walch

+
L: oA
a0 L ume Tloat T . T NN I
intake char Ak aileyl

*

The keyboard shortcut is <CTRL-W».

A Refer also to Watch Expressions in the Debugging section in
Chapter 3, Using Dynamic C.

Clear Watch Window

Removes entries from the watch dialog and removes report text from the
watch window. There is no keyboard shortcut.

Technical Reference Dynamic C Environment ¢+ 4-17

Update Watch Window

Forces expressions in the watch expression list to be evaluated and
displayed in the watch window. Normally the watch window is updated
every time the execution cursor is changed, that is when a single step, a
break point, or a stop occurs in the program. The keyboard shortcut is
«CTRL-W>.

Disassemble at Cursor

Loads, disassembles and displays the code at the current editor cursor.
This command only works in user application code (not the libraries) that
is not declared nodebug. This command does not stop the execution on
the target either. The keyboard shortcut is <CTRL-F10>.

Disassemble at Address

Loads, disassembles and displays the code at the specified address. This
command produces a dialog box that asks for the address at which disas-
sembling should begin. Addresses may be entered in two formats: a 4-digit
hexadecimal number that specifies any location in the root space (the valid
range is 2000 to DFFF), or a 2-digit CBR page number followed by a colon
followed by a 4-digit logical address (the page number ranges from 00 to
FF, while the valid range for the logical address is from E000 to FFFF).
Note that the disassembler rejects any attempt to disassemble code
between address 00000 and 02000 in the physical memory, regardless of
how the address is expressed in logical address. The keyboard shortcut is
<ALT-F10>.

Dump at Address

Allows blocks of raw values in any memory location (except the BIOS 0—
2000H) to be looked at.

— Cunp &l Al dress

H e At 6 5 |“|:- |

CloenpseFila #fyine ec) | |
Filn |

(# R Aaddr

'___.'IJ'I'r!,lurJ.IAHrll |E'-'=-| I

Values can either be displayed on the screeen or written to a file if “Dump
to File” is checked.

4-18 + Dynamic C Environment Dynamic C 5.x

A typical screen display appears below.

48 09 E1 TE 23
2418 16 2% ES €5
2420 E1 €1 T 2F
2430 €1 €5 W 23
£840 BT OF B3 aF
2450 I 2§ 19 26
Z4ER EF CD FT 28
Z4TEB B5 88 ES 21 B5 88 ES CD 27 2ZE C1 C1 EF 21 B5S 8

Q| £

€3 F1 ED b 3& CB FD E1 E1 E1 E1 3%
EFCT M T ECT M 23T 23 gl
23 2 F2 FF 3% FA FD Ef @F a7 @F gl
9F @1 OF @F a7 B9 24 20 25 00 26

28 F3 28 X1 90 00 CD 3E 37 EF FI =83
21 TE DE 38 8@ EF CD FT 32 EF 21 3

MESZZEA

Z3 We Z3 ED ZB 3B ES ED 33 3B 21 1+
+

The dump window can be scrolled. Scrolling causes the contents of other
memory addresses to appear in the window. The window always displays
128 bytes and their ASCII equivalent. Values in the dump window are
updated only when Dynamic C stops, or comes to a break point.

If “Dump to File” is checked, specify the number of bytes and the
pathname of the file. The file output in Table 4-2 resembles the screen
dump.

Table 4-2. Screen Dump

2400 D9 E1 7E 23 4E 23 46 23 ED 20 38 E5 ED 39 38 21 ~#N#F# 8 98!
2410 16 24 E5 C5 D9 C9 F1 ED 39 38 C9 FD E1 E1 E1 E1 $ 98

2420 E1 C1 71 23 70 23 C1 71 23 70 23 C1 71 23 70 23 q#p# q#p# q#p#
2430 C1 C5 71 23 70 23 21 F2 FF 39 F9 FD E9 OF 07 OF qg#p# 9

2440 07 OF 03 OF 03 OF 01 OF OF 07 E9 24 2D 25 00 26 $-% &
2450 2B 26 39 26 DD 28 F3 28 21 00 00 CD 9E 37 EF F3 +&93& ((! 7
2460 EF CD F7 24 EF 21 7E DB 36 00 EF CD F7 32 EF 21 $!1~6 2!
2470 05 00 E5 21 05 00 E5 CD 27 2E C1 C1 EF 21 05 00 ! ’ !

Options Menu
Click the menu title or press <ALT-O» to select the OPTIONS menu.

Gompder,.
Rehugaer._.

Memory b
[Hspilay. ..

Serial.

i Shares Tood Bar

San errvironmend

The OPTIONS menu commands and their functions are described here.

Technical Reference Dynamic C Environment ¢+ 4-19

Editor
The Editor command gets Dynamic C to display the following dialog.

Tevsops [0 |

[=] i ndom
l_'] Hamarw [rnibng Whisspnce

oe | |t | | conce |

Use this dialog box to change the behavior of the Dynamic C editor. By
default, tab stops are set every three characters, but may be set to any value
greater than zero. “Auto-Indent” causes the editor to indent new lines to
match the indentation of previous lines. “Remove Trailing Whitespace”
causes the editor to remove extra space or tab characters from the end of a
line.

Compiler

The Compiler command gets Dynamic C to display the following dialog,
which allows compiler operations to be changed.

- ComplerOploas |
Ren-Time Chacking | Waraing Heporis
mhrm:f Indices s
EP!.IIlHIH "_.l Sunous Onky
p— {_IMonn
I'ypie Chaclonn
it Fike Opdion
.]F‘lululﬁll-
Crenln HEX Filn Al
mnin iln Alen] Dam
Tl Poisinr
- Fike Typo e “Compile o File® —
1 Code with BHE [HIN] Optmiees For
?Elbilrn
i) Hull device) Spnud
) [@1LE dor doeminnd E
rjﬂudnmhnnﬁlﬂﬁq‘m | Hirlp | |M| I

4-20 + Dynamic C Environment Dynamic C 5.x

“Warning Reports” tell the compiler whether to report all warnings, no
warnings or serious warnings only. It is advisable to let the compiler
report all warnings because each warning is a potential run-time bug.

Demotions (such as converting a long to an int) are
/ considered non-serious with regard to warning reports.

The ”Run-Time Checking” options in this box, if checked, cause a fatal
error message at run-time. These options increase the amount of code and
cause slower execution, but they can be valuable debugging tools. The
options are described in Table 4-3.

Table 4-3. Run-Time Checking Options

Array Indices | Checksarray bounds. This feature adds code for every
array reference.

Pointers Check for invalid pointer assignments. A pointer
assignment isinvalid if the code attempts to writeto a
location marked not writeable. Locations marked not
writeable include the entire root code segment. This
feature adds code for every pointer reference.

Stack Check for stack corruption. Stack errors are reported on
return from the function.

“Optimize For” optimizes the program for size or for speed. When the
compiler knows more than one sequence of instructions that perform the
same action, it selects either the smallest or the fastest sequence, depend-
ing on the programmer’s choice for optimization.

The difference made by this option is less obvious in the user application
(in which most code is not marked nodebug). The speed gain by optimiz-
ing for speed is most obvious for functions that are marked nodebug and
have no auto local (stack-based) variables.

Technical Reference Dynamic C Environment ¢+ 4-21

“Type Checking” options tell Dynamic C to perform the appropriate type
checking described in Table 4-4.

Table 4-4. Type Checking Options

Prototypes | Performs strict type checking of arguments of function calls
against the function prototype. The number of arguments
passed must match the number of parametersin the
prototype. In addition, the types of the arguments must
match those defined in the prototype. Z-World recommends
prototype checking because it identifies likely run-time
problems. To fully use this feature, al functions should
have prototypes (including functions implemented in
assembly).

Demotion Detects demotion. A demotion automatically converts the
value of alarger or more complex type to the value of a
smdler or less complex type. The increasing order of
complexity of scalar typesis:

char

unsi gned int

i nt

unsi gned | ong
| ong

fl oat

A demotion deserves a warning because information may be
lost in the conversion. For example, when al ong variable
whose value is 0x10000 is converted to an i nt vaue, the
resulting valueis 0. The high-order 16 bitsarelost. An
explicit type casting can eliminate demotion warnings. All
demotion warnings are considered non-serious as far as
warning reports are concerned.

Pointer Generates warnings if pointers to different types are
intermixed without type casting. While type casting has no
effect in straightforward pointer assignments of different
types, type casting does affect pointer arithmetic and pointer
dereferences. All pointer warnings are considered non-
serious as far as warning reports are concerned.

4-22 + Dynamic C Environment Dynamic C 5.x

“File Type for “Compile to File

9999

options specify the file type when the

“Compile to File” or “Compile to File with * RTI File” commands are
issued. The file types appear in Table 4-5.

Table 4-5. File Type for "Compile to File" Options

Code with BIOS
*.BIN

The "Compileto File" or "Compile to File with

* RTI File" command generates an EPROM (. BI N)
file. If the"Create HEX file also" option is checked,
the command also generates an Intel hex format file
(- HEX) in addition.

Null device

The "Compileto File" or "Compile to File with

* RTI File" command generates no output. This
option alows very fast compilation and isuseful if
just to (1) perform syntax checking, (2) perform type
checking or (3) get the sizes of each code and data
segment..

. DLP for download

The "Compileto File" or "Compile to File with
* RTI File" command generates a downloadable
program file (. DLP) to be used by the Z-World
download manager (DLM).

Code with no BIOS
(*. BPF)

This option isincluded for backward compatibility
only and is used for downloading programsto RAM.

Under the “Object File Option,” if the “Create HEX File Also” and “Code
with BIOS (*.BIN)” items are checked, Dynamic C will generate an Intel
hex format file in addition to a .BIN file when ythe program compiles to a

file.
Debugger

The Debugger command gets Dynamic C to display the following dialog.

[ZlAuin Ogses ETOID Wisdos
[Lesg sTDOOUT

Ling bl ||]||: ouT

Cl Appesd Log

[o || HeE ||1:.m.||

Technical Reference

Dynamic C Environment ¢+ 4-23

The options on this dialog box may be helpful when debugging programs.
In particular, they allow printf statements and other STDIO output to be
logged to a file. Check the box labeled “Log STDOUT” to send a copy of
all standard output to the log file. The name of the log file can also be
specified along with whether to append or overwrite if the file already
exists. Normally, Dynamic C automatically opens the STDIO window
when a program first attempts to print to it. This can be changed with the
checkbox labeled “Auto Open STDIO Window.”

Memory

The Memory command gets Dynamic C to display a submenu. Click one
of the three submenu items to specify memory settings.

Window Help

Editar.,,
Compler...
Llehugaer...

[y
Seerial.,

i Shivw Tool Bar

Savee arwiranaent

The “Physical” memory submenu produces the following dialog.

EE B8 HE OO BE

Eﬂtﬂl

- FPhysical Memory Options__|
Btan of ROM LT
End ol R MO
Gran of Fulkd 0k
End ol Futhd S0k
=] fain Camlig

B Pl Dty NI
CosderDiatn Gap 0L
(o] [|

4-24 + Dynamic C Environment

Dynamic C 5.x

The size and boundaries of RAM and ROM, or the format of a hex file can
be specified according to the information in Table 4-6.

Table 4-6. Memory Options

Start of ROM (EPROM or flash) aways starts at address 0000.
ROM

End of This option is only used to build an application EPROM or
ROM to compileto flash. Sincethe ROM always starts at physical

address 00000y, this option aso specifies the size of the
EPROM to be built. For example, if 10000 (64K) is
specified as the end of ROM, EPROMs that have 64K bytes
for the application are needed.

Start of RAM starts at 40000y (256K), 80000 (512K), or AOOOOH
RAM (640K). Normally, this option is set by the "Auto-Config"
feature. However, if code that is meant for download to
RAM is compiled with multiple programs resident, this
option can be changed so different programs occupy
different segments of RAM.

End of The physical address where RAM ends depends on the
RAM RAM chip. The difference between end of RAM and start
of RAM is equal to the size of the RAM chip.

Max Root Thisis the anticipated maximum size of root code. This
Code paramter is meaningful only when building an application
EPROM or compiling to flash. The size of root codein the
actual program can be less than or equal to thisamount. The
maximum root code size cannot exceed 44K (BO0Oy).

To get optimum memory allocation, compile the program to
the null device, then use the information in the information
window to decide this parameter.

Code-Data | Thisoption allows the compiler to load programsin RAM
Gap using a 32K RAM on the target. tis meaningful only when
compiling directly to target RAM. Set this option to 8000H
only if the target RAM sizeis 32K, otherwise set it to

0000H.
Auto Thisbox , when check, makes Dynamic C determine the
Config start and end of RAM automatically. The code-data gap will

also be adjusted automatically.

Auto-Config should always be checked for most program-
mers. This allows the physical memory options to be set
automatically when Dynamic C connects to the target
controller. Programmers who wish to create a program that
residesin adifferent part of memory can turn this option off.

Technical Reference Dynamic C Environment ¢+ 4-25

The “Logical Memory” submenu provides the following dialog.

pecksin [o]
Aux SRmck Sirn E E
wome [ol
Frum Siru (T

[0k]| vep | comcen |

The “Stack Size” option specifies the number of bytes (in hex) allocated
for the run-time stack. If the function calls nest deeply or if there are large
amounts of auto local function data, use this option to increase the
memory allocated.

The “Aux Stack Size” option specifies the number of bytes (in hex)
allocated to an alternate stack used mainly for stack verification bookkeep-

ing.
The “Heap Size”’ option specifies the number of bytes (in hex) in the heap
(used for dynamic memory allocation functions such as malloc). Heap
space must be allocated before using dynamic memory allocation.

The “Free Size” option specifies the number of bytes (in hex) that are not
allocated for other purposes such as the heap. This space is completely
under the program’s control and is accessed entirely by pointers. Use the
Information window (under the WINDOW menu) to find out where this
memory is allocated.

The “Reserve Memory” submenu provides the following dialog.

Fiosen Placa e T
PR e =

[ox | e | [comen |

“Root Reserve” and “XMEM reserve” specify how the compiler allocates
memory. When compiling code whose destination is not specified (that is,
anymem code), Dynamic C first compiles all code to root until the amount
of root memory left is less than the size of the root reserve. Then the

4-26 + Dynamic C Environment Dynamic C 5.x

compiler places all anymem code in extended memory until the amount of
extended memory left is less than the XMEM reserve. The compiler then
returns to the root until memory is exhausted. Functions specifically
placed in root memory or in XMEM are always compiled in the area
specified. The reserves guarantee a minimum of space in both the root and
extended memory for functions that must go in one of those areas.

Leave enough space in the root reserve for all library functions invoked in
the program.

Display
The Display command gets Dynamic C to display the following dialog.

— Dsplay Oplions

|Ghoeggs | | moip | ciose |

Use the display options dialog box to change the appearance of Dynamic C
windows. First choose the window from the window list. Then select an
attribute from the attribute list and click the change button. Another dialog
box will appear to make the changes. Note that Dynamic C allows only
fixed-pitch fonts and solid colors (if a dithered color is selected,

Dynamic C will use the closest solid color).

The Editor window attributes affect all text windows, except two special
cases. After an attempt is made to compile a program, Dynamic C will
either display a list of errors in the message window (compilation failed),
or Dynamic C will switch to run mode (compilation succeeded). In the
case of a failed compile, the editor will take on the “Error Editor” at-
tributes. In the case of a successful compile, the editor will take on the
“Debug Editor” attributes.

Technical Reference Dynamic C Environment ¢+ 4-27

Serial
The Serial command gets Dynamic C to display the following dialog.

Paet ETa | [Lc e
: (o Bnckgroursd TH
Bewd Ame [19200 [§] By Biegrd TH
o [T3] (% Full Spesd Alogad TX
[oc] _rme | [conen]

Use this dialog to tell Dynamic C how to communicate with the target
controller. The COM port, baud rate, and number of stop bits may be
selected. The transmission mode radio buttons also affect communication
by controlling the overlap of compilation and downloading. With “No
Background TX,” Dynamic C will not overlap compilation and download-
ing. This is the most reliable mode, but also the slowest—the total compile
time is the sum of the processing time and the communication time. With
“Full Speed Bkgnd TX,” Dynamic C will almost entirely overlap compila-
tion and downloading. This mode is the fastest, but may result in commu-
nication failure. The “Sync. Bkgnd TX” mode provides partial overlap of
compilation and downloading. This is the default mode used by

Dynamic C.

4-28 + Dynamic C Environment Dynamic C 5.x

Show Tool Bar

The Show Tool Bar command toggles the tool bar on or off:

e 0] [7 %] [Edn [compite] [ssemb] megs | smmex || F |

Dynamic C remembers the toolbar setting on exit.

Table 4-7 explains what the toolbar buttons mean.

Table 4-7. Dynamic C Toolbar

New file Find

23] Openfile Replace

Bal savefile Repeat "Find" or "Replace"
Print Switch to Edit mode

Print preview Compile to RAM

Cut (delete) Toggle assembly window
Copy Toggle register window
Paste Toggle stack window

Show "Help" contents

Save Environment

The Save Environment command gets Dynamic C to update the DCW. INI
and DCW. CFG initialization files immediately with the current options
settings. Dynamic C always updates these files on exit. Saving them while
working provides an extra measure of security.

Technical Reference Dynamic C Environment ¢+ 4-29

Window Menu

Click the menu title or press <ALT-W5 to select the WINDOW menu.

Lile: Harl randiy
Tl Wertcaky
Arrange jcons

Missaie
Watch
Shilia
A5 e bly
Hegisters
=tack
Infermation

¢] DEM-O_RT.C

Fio

The first group of items is a set of standard Windows commands that allow
application windows to be arranged in an orderly way.

The second group of items presents the various Dynamic C debugging
windows. Click on one of these to activate or deactivate the particular
window. It is possible to scroll these windows to view larger portions of
data, or copy information from these windows and paste the information as
text anywhere. The contents of these windows can be printed.

The third group is a list of current windows, including source code
windows. Click on one of these items to bring that window to the front.

The Window commands are described here.

4-30 ¢+ Dynamic C Environment

Dynamic C 5.x

Cascade

The Cascade command gets Dynamic C to display windows “on top of
each other,” as shown. The window being worked in is displayed in front
of the rest.

File Edi Compie HBun nspect Oplions Window Help

- Reqishers |*r| =
= Anneambly w =]
- Stack .|
= L
Lils i
VAT _ERAE|) =
conmant_flsge=D
InlE _Escresml|) f% lnitiall

Tun_&raty [TREES 5] ;

- printf|*ixlb=8olho® , 5+33 . F=i1d)

Technical Reference Dynamic C Environment ¢+ 4-31

Tile Horizontally

The Tile Horizontally command gets Dynamic C to display windows in
horizontal (landscape) orientation, although the windows are stacked

vertically.

[iz
Fal_lnll]:
Sommanlt_Tlag=i];
inik_ksznsli];
Ddn_SveETy i TASES B}
rum_sveEryr i TAERL 10
o sveETy (TRSEd 5
imic_ElmaTd (92160
EIM}
backgndil :

gy [ink %, LnE ¥

E B OE BB E R

[ymamic © Dehoe 5.00

File Ed@ Compie Hun mopect Opliong Window Help

imibializes runtimd
run taek 5 every |
run Esmk 1 swvary !
run Cask 4 =wary !
50 Hz, no Keypad

EAIE Tunning =/

ChilE Tung «TTST &0

prinkd [“ynlbebobo® x+33, y+33]) N
-
= FaRe =[]~

ZHEY ES push hl

ZYBS CO2T2E call run_susry

2hEE 01 pop be

24Ed 1 pop be

248a EF ret 28R]

24BE 210500 14 L

24fe ES push Rl

2HBF 21B4BE 14 hl, BN

249 ES push hl

2883 COZTIE call run_suery

Z48E €1 pop b

248t 1 pop be r
I

4-32 + Dynamic C Environment

Dynamic C 5.x

Tile Vertically

The Tile Vertically command gets Dynamic C to display windows in
vertical (portrait) orientation.

L] umie 5. 1)
File Ed QCompie HBun mspect Oplions Window Help
~[+f=- Assembly =] s
¥ -|l: ;J.:u.l. (3 i gﬂ rl'iﬂ BURFY 1'
Sommanl_TLlag=q; 'l
inik_ksrnsli]; pop bo
Dam_EveTy { TRSEY . 3| Fop BC
i _wvETy (TASEL, B rat Z8h
amn eveETr i TEEEd . 5O
EiIJIE_l:JJlZ"I" QILe); :‘:“ :i.ﬂm5
backgnd (] 1d k1. 0605
push bl -
goxy [ink %, L1nE ¥ e PUR_#HY _I
il Fop bBo
prinkd [“yrlbetoRo® x+32, 433 pup be
rat ZBh
1d hl, 2%86
Shabed Float CaEg: /¢ CobpaEacul
ILATEA TLOar -:-'4' mp; 40 go'-po'.-l-'- push hl
ahabed Float wel ¢ FY amOUnt O call inik_Rimerd
abkired char hsafsr; ¢ 1- haaksI
pop bc
.1} E HE - T k -
ahared char level; ;+ 1 watsz JE "%t 2h s
* =5 *

Arrange Icons

When one or more Dynamic C windows have been minimized, they are
displayed as icons. The Arrange Icons command arranges them neatly.

Watch Assembly Stdio DEMOIETE

Message

Click the Message command to activate or deactivate the message
window. A compilation with errors also activates the message window
because the message window displays compilation errors.

Technical Reference Dynamic C Environment ¢+ 4-33

Watch

The Watch command activates or deactivates the watch window. The
“Add/Del Items” command on the INSPECT menu will do this too. The
watch window displays the results whenever Dynamic C evaluates watch
expressions.

Stdio

Click the Stdio command to activate or deactivate the STDIO window.
The STDIO window displays output from calls to print£. If the program
calls print£, Dynamic C will activate the STDIO window automatically,
unless another request was made by the programmer. (See Debugger
Options.)

Assembly

Click the Assembly command to activate or deactivate the assembly
window. The assembly window displays machine code generated by the
compiler in assembly language format.

The “Disassemble at Cursor” or “Disassemble at Address” commands also
activate the assembly window.

Registers

Click the Registers command to activate or deactivate the register
window. The register window displays the Z180 register set, including the
status register. Letter codes indicate the bits of the status register (F reg-
ister). The window also shows the source-code line and column at which
the register “snapshot” was taken. It is possible to scroll back to see the
progression of successive register snapshots.

=i 1
L: 18% C:5

H C |
O Ha

BC TEED EC™ BEBE
OE 238 DE' BoGd
HL @©O9TE HL" Ba2g
1X BoBg [¥Y 2Z4FD
PC 2Z%FE 5F DAAT

* | [+

4-34 + Dynamic C Environment Dynamic C 5.x

Stack

Click the Stack command to activate or deactivate the stack window. The
stack window displays the top 8 bytes of the run-time stack. It also shows

the line and column at which the stack “snapshot” was taken. It is possible
to scroll back to see the progression of successive stack snapshots.

- i

L: 18% C:5
DO2A1: 2%b%
DER3E: 2255
O=4%: 8588
DO%AT: 3IFBD
D@R3 . 2040
D&AB: INTF
O&AD: 2623
p&aF . BCED

C E—""u

Information

Click the Information command to activate the information window.

— I

Himzn Tnp Siirn
Flasd codu il IDE] 1984 Total code siae 1 487 F byun
HWEM pode: BCON BEWd B2DFA Tanal dain #ize ATEA bt
Wnirh code IE [H A EH ILmpe cnmgalmd LREL]
Stock: Ddad Ddak bE Compis lima 13 aneonds
Aoat dala: DAAT DEFF e Coamipiby spaadc JRITN Divse-5 v i
UMW dala: NCIIM BENA 204 Dhyiee gensrsied Ihlsr
Huap MGl DEFF] Tolal Bylus sanl 1BITS
Fina DOE DCFF Pl] R temriad Dyhird a
K

(LA

The information window displays how the memory is partitioned and how
well the compilation went. In this example, no space has been allocated to
the heap or free space. The base and top of these memory partitions can be
changed with commands from the OPTIONS menu.

Technical Reference Dynamic C Environment ¢+ 4-35

Help Menu
Click the menu title or press <ALT-H» to select the HELP menu.

Kaysirokes
Search for Help on.
Library Help Lookwp CiritH

| about..

The HELP menu commands and their functions are described here.

Contents

Invokes the on-line help system and displays the contents page.

= oo O
Eile Edit Bookmark Help

P I TN = I T |

Dynamic C Help Contents

Overview - What is availsble in orelne belp
Revelopensnd - How bo use Dynamic ©
Keystrohes - Keysirokes recognized by Diynamio C

Diplog Bomeg - Cptions and conbrols availatile on CrRmamic
C dealing beoeas

Wiindows - Windoas usetul for development in e
Crymarmic erparonment

4-36 + Dynamic C Environment Dynamic C 5.x

Keystrokes

Many commands on the Dynamic C menus are also available directly
through the keyboard. In addition, some operations can only be performed
through the keyboard (specifically, certain cursor movement and editing
operations).

Select this item for information on available keystrokes and their functions.

[ymamic C Halp

File Edit Bookmark Help

[Somests] Gemch [Gock [rimeer | - | = [N
Keystrokes

Athough & mouse or ofher poenting dewoa may be correanian,
Dymamic C for Windoss sUpports oparaton antrety from the
keyboand. Sokact a topic bakow for @ kst of relaled kaysirokes

L W

g SInhG
Apcakrglong
Editor
[buagger

Search for Help on

Select this item to search for help on a particular topic. Type in a keyword
and press ENTER to see a list of related topics. Then select a topic from
the list and press ENTER again to view the topic.

Typi o word of salech ono fom e list | i I

Thun choose Show Topics.

[options |
atcnleininm #
mrenlmminm dekagging
mddmn nnd w wwich o
| e mbily Code
|damnmmibiky Windoe &

Lelerd & npic hse chasas Gn T m

ol i velnfy Fla v Diptadd e Dial oo

Technical Reference Dynamic C Environment ¢+ 4-37

Library Help Lookup

Obtains help information for library functions. When a function name is
clicked (or the function name is selected) in source code and then the help
command is issued, Dynamic C displays help information for that function.
The keyboard shortcut is <CTRL-H>.

If Dynamic C cannot find a unique description for the function, it will
display the following dialog box.

_Shury_1 Femal m CYDRCEETVLENSEEYEXTIE LA
Elviry | Bl a2 WDRESE 1 ULIBVSEEYVESTID LIH
Sy | St i G ADRCEE 1 YUBSEEYEXTD LA
_Eewry_Bankidig is CUBCSE LB EEEYELTD LIE
bemy ban ki i COEMCEHTYLIEL SRR YREXTID LIK
_Skewy_boclean m CYCEETLBSEEY LIH
Sepy_dscout in CLOCRIENLINLEEYEXTROLE
By st in GOS0 | LEN GOEY LB
Sy gl pepet b O DG GRS LIE SR EXTIDLIB

[Coe] (Dt | |Gt]

Clicking “Lib Entries” to display a list of the library functions currently
available to the program. (These are the files named in the file LIB.DIR.)
Then select a function name from the list to receive information about that
function.

Dynamic C displays a dialog like this one when a function is selected for
display of help information.

FimcBaim Looakopi Inssr]
'

I o] o] [Gesar]] [Csi] @ vewomw

Fuschon Duscnplion i) Imsan Cail

stropy CSTRING LID> *

SYNTEY, char ssbrepylchar wdab, char ware])
EEYMORDSE: sbring

DESCRIFTION: Copies strimg “sro” Eo skring “dst™. Copl
{khe null).

RETURM URLUE: Pointer to “dst”.

[e=]

= | |

4-38 + Dynamic C Environment Dynamic C 5.x

Although this may be sufficient for most purposes, the “Insert Call” button
can be clicked to turn the dialog into a “function assistant”:

[Beowan]| [Tor] [Sossat] [rion | [Trmmt] ' View Oaly

Fusctea Duzcnplinon 'ﬂ"l_." Cadl

strepy CETRING . LIB: Ll
LVMTAN: ehar matrepylchar =dal, char sars): -

EEYWORDS : strimg

DESCAIPTION: Copies string “sro” to string “dst”. Copies|®

« |

|Farmnninr # || E Hamp m Daicnplion |dr’t
‘comment 4]

Espr in Call | Tves [char =

L imnen prisem: "I I Iﬂ

|

L]

=]] |

The function assistant will place a call to the function displayed at the
insertion point in the source code. The function call will be prototypical if
OK is clicked; the call needs to be edited for it to make sense in the
context of the code.

Each parameter can be specified, one-by-one, to the function assistant.
The function assistant will return the name and data type of the parameter.
When parameter expressions are specified in this dialog, the function
assistant will use those expressions when placing the function call.

If the text cursor is placed on a valid C function call (and one that is known
to the function assistant), the function assistant will analyze the function
call, and will copy the actual parameters to the function lookup dialog.
Compare the function parameters in the “Expr. in Call” box in the dialog
with the expected function call arguments.

Consider, for example, the following code.

X = strcpy(comment, “Lower tray needs paper.”);

Technical Reference Dynamic C Environment ¢+ 4-39

If the text cursor is placed on strepy and the “Library Help Lookup”
command is issued, the function assistant will show comment as param-
eter 1 and Lower tray needs paper. as parameter 2. The arguments
can then be compared with the expected parameters, and the arguments in
the dialog can then be modified.

The function help dialog will probably be needed only when the program-
mer is unfamiliar with or unsure of a function.

About

The About command displays the Dynamic C version number and the
copyright notice.

Urgnnmir O Linkews & 01

BT Warsion 500 - Eaglish
= Capyright 1955
F-Warkd Espineoning

Al righls ruserewcd

4-40 + Dynamic C Environment Dynamic C 5.x

THE LANGUAGE

Technical Reference The Language ¢ 5-1

This chapter is not intended to be a C-language tutorial. The reader is
expected to know how to program, and to know the basic principles of the
C language. The objective of this chapter is to

1. Present the C-language features, and
2. Review the differences between ¢ and Dynamic C.

Most punctuation in the examples is literal: it is generally required where
examples indicate.

The C language is “case-sensitive,” that is, upper case (capital) letters are
distinct from lower case letters. The term putchar is not the same as
PutChar. All keywords in C are lower case.

This manual shows syntax by example rather than by any formalism.

For a more formal treatment of the C language, refer to the
& many good textbooks available.

Overview

Program Files

Programs are built by creating text files containing program code (that is,
source files). Then there are libraries—files of useful functions. There are
many library files already in the Dynamic C LIB subdirectory. The default
library file extension is . LIB.

A controller program requires at least one application file containing the
main program and perhaps other functions and global data. The default
application file extension is .C. (There are many sample programs in the
SAMPLES subdirectory.)

Dynamic C links the application program to functions and data in the other
files selected for use with the application. The compiler will extract the
functions and data when needed.

Code in the BIOS of the target controller (or the RTT file) is also linked
(and is very important) to the program.

Thus, the overall structure of an application consists of a main program
(called main), zero or more functions, and zero or more global data, all of
which are distributed throughout one or more text files. The order in
which these are defined is not very important. The minimum program is
one file, containing only

main () {

}

5-2 + The Language Dynamic C 5.x

Libraries are “linked” with the application through the #use directive.
The #use directive identifies a file from which functions and data may be
extracted. Files identified by #use directives are nestable, as shown in
Figure 5-1.

Application X.LIB Y.LIB
#use x.1ib4— | #use y.1ib4—»" 2 1.
x;\é:i.n() { fl.n;ction _____
i o Afl.lr}ction
#l:lée z.lib .fiulnction ZLIB

#use z.lib T

g oo -

Figure 5-1. Nesting Files in Dynamic C

The Modules section later in this chapter explains how Dynamic C knows
which functions and global variables in a library to use.

Support Files

Dynamic C has several support files without which it is not possible to
build an application. These files are listed in Table 5-1.

Table 5-1. Dynamic C Support Files

File Meaning

DCW | NI Most Windows applicationshave . | NI files. This. | NI
fileisthe one for Dynamic C. It contains the display
options and other environmental parameters.

DCW CFG Contains configuration data for the target controller.

DC. HH Contains prototypes, basic type definitions, #def i nes,
and default modes for Dynamic C. Thisfile can be
modified by the programmer.

LI B. DI R Contains pathnames for all libraries that are to be known
to Dynamic C. The programmer can add to, or remove
libraries from thislist. The factory default isfor thisfile
to contain all libraries on the Dynamic C distribution disk.

DEFAULT. H | Containsaset of #use directivesfor each control product
that Z-World ships. Thisfile can be modified.

Technical Reference The Language ¢ 5-3

Statements

Except for comments, everything in a C program is a statement. Virtually
all statements end with a semicolon. A C program is treated as a stream of
characters where line boundaries are (generally) not meaningful. Any C
statement may be written on as many lines as needed. Comments (the
/*...*/ kind) may occur almost anywhere, even in the middle of a
statement, as long as they begin with /* and end with */.

A statement can be many things. A declaration of variables is a statement.
An assignment is a statement. A while or for loop is a statement. A
compound statement is a group of statements enclosed in curly brackets {
and }.

Declarations

A variable must be declared before it can be used. That means the variable
must have a name and a type, and perhaps its storage class could be
specified. If an array is declared, its size must be given.

// static integer variable & static integer array
static int thing, array[12];

// auto float array with 2 dimensions

auto float matrix[3][3];

// initialized pointer to char array
char *message = “Press any key...”;

If an aggregate type (struct or union) is being declared, its internal
structure has to be described, as shown below.

struct { // description of struct
char flags;
struct { // a nested structure here
int x;
int y;
} loc;
} cursor;
int a;

a = cursor.loc.x; // use of struct element here
Functions

The basic unit of a C-language application program is a function. Most
functions accept parameters—or arguments—and return results, but there
are exceptions. All C functions have a return type that specifies what kind
of result, if any, it returns. A function with a void return type returns no
result. If a function is declared without specifying a return type, the
compiler assumes that it is to return an int (integer) value. See Fig-

ure 5-2.

5-4 + The Language Dynamic C 5.x

Application

Global Data —~
“Main” Function
Function 1
Function 2

Function 3

Function n

Iltems accessible by all functions

Function

type name (params...) {

local data — T ltems accessible

statement 1;
statement 2;
statement n;

return (expr);

by this function
only

Figure 5-2. Functions in C Programming

Functions may cal/l other functions. (A function may even call itself.
Programmers call such a function a recursive function.) The main
function is called automatically after the program compiles or when the
controller powers up. The beginning of the main function is the entry

point to the entire program.

Prototypes

A function may be declared with a prototype. This is so that

1. Functions that have not been compiled may be called.

2. Recursive functions may be written.

3. The compiler may perform type-checking on the parameters to
make sure that calls to the function receive arguments of the
expected type. A function prototype describes how to call the
function and is nearly identical to the function’s initial code.

// this is a function prototype
long tick _count (char clock_id);

// this is the function’s definition

long tick _count (char clock_id) {

}

Technical Reference

The Language ¢ 5-5

It is not necessary to provide parameter names in a prototype, but the
parameter type is required, and all parameters must be included. (If the
function accepts a variable number of arguments, as print£ does , use an
ellipsis.)
// this prototype is as good as the one above
long tick-count (char);

// this is a prototype that uses ellipsis
int startup (device id, ...){

}
Type Definitions

Both types and variables may be defined. One virtue of high-level
languages such as C and Pascal is that abstract data types can be defined.
Once defined, the data types can be used as easily as simple data types like
int, char and float. Consider this example.

typedef int MILES; // a basic type named MILES
typedef struct{ // a structure type...
float re; //
float im; //
} COMPLEX; // ...named COMPLEX

MILES distance; // declare variable of type MILES
COMPLEX z, *zp;// declare complex variable and ptr

Use typedef to create a meaningful name for a class of data. Consider
this example.

typedef uint node;

void NodeInit(node); // type name here is
informative
void NodeInit(uint); // not very informative

5-6 + The Language Dynamic C 5.x

This example shows many of the basic C constructs.

//7; Put descriptive information in your program code‘\\
using this form of comment, which can be inserted
anywhere and can span lines. The double slash
comment (shown below) may be placed at end-of-
line.*/
#use drivers.lib// driver functions now available.
##define SIZE 12 // A symbolic constant defined.

int g, h; // declare global integers.
float sumSquare(int, int); // prototypes for
void init():; // functions below.
main () { // program starts here
float x; // x is local to main.
init(); // call a void function.
x = sumSquare(g, h);// x gets sumSquare
value.
printf (“x = $£”,x); // printf is a standard
} // function.
void init () { // Void functions do things but
g = 10; // they return no value.
h = SIZE; // Here, it uses the symbolic
} // constant defined above.

float sumSquare(int a, int b){ // integer args.

float temp; // local var.
temp = a*a + b*b; // arithmetic.
return(temp); // return value.

}

\\\, /* and here is the end of the program */ 4//

This program calculates the sum of squares of two numbers, g and h,
which are initialized to 10 and 12, respectively. The main function calls
the init function to give values to the global variables g and h. Then it
uses the sumSquare function to perform the calculation and assign the
result of the calculation to the variable x. It prints the result using the
library function print£, which includes a formatting string as the first
argument.

Notice that all functions have { and } enclosing their contents, and all
variables are declared before use. The functions init and sumSquare
were defined before use, but there are alternatives to this. The Prototypes
section earlier in this chapter explained this.

Technical Reference The Language ¢ 5-7

Modules

Modules provide Dynamic C with the ability to know which functions and
global variables in a library to use.

A library file contains a group of modules. A module has three parts: the
key, the header, and a body of code (functions and data).

A module in a library has a structure like this one.
/*** BeginHeader func,, var,, */

prototype for func,
declaration for var,

/*** EndHeader */

definition of func, var, and possibly other
functions and data

The Key
The line (a specially-formatted comment)
/*** BeginHeader name,, name,, */

begins the header of a module and contains the module keye. The key is a
list of names (of functions and data). The key tells the compiler what
functions and data in the module are available for reference. It is impor-
tant to format this comment properly. Otherwise, Dynamic C cannot
identify the module correctly.

If there are many names after BeginHeader, the list of names can
continue on subsequent lines. All names must be separated by commas.

The Header

Every line between the comments containing BeginHeader and
EndHeader belongs to the seader of the module. When an application
#uses a library, Dynamic C compiles every header, and just the headers, in
the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and
variable declarations, a module header ensures proper type checking
throughout the application program.

The Body

Every line of code after the EndHeader comment belongs to the body of
the module until (1) end-of-file or (2) the BeginHeader comment of

another module. Dynamic C compiles the entire body of a module if any
of the names in the key are referenced (used) anywhere in theapplication.

To minimize waste, it is recommended that a module header contain only
prototypes and extern declarations. (Prototypes and extern declara-
tions do not generate any code by themselves.) Define code and data only
in the body of a module. That way, the compiler will generate code or

5-8 + The Language Dynamic C 5.x

allocate data only if the module is used by the application program.
Programmers who create their own libraries must write modules following
the guideline in this section. Remember that the library must be included
in LIB.DIR and a #use directive for the library must be placed some-
where in the code.

Example

///7 /*** BeginHeader ticks */ ‘\\\

extern ulong ticks;
/*** EndHeader */

ulong ticks;

/*** BeginHeader Get Ticks */
ulong Get Ticks();
/*** EndHeader */

ulong Get_ Ticks() {
}
/*** BeginHeader Inc_Ticks */

void Inc_Ticks(int i);
/*** EndHeader */

#asm
Inc_Ticks::
or a
di
ei
r

et
\\\7 #endasm 4//

There are three modules defined in this code. The first one is responsible
for the variable ticks, the second and third modules define functions
Get Ticks and Inc Ticks that access the variable.

Note that although Inc_Ticks is actually an assembly language routine, it
has a function prototype in the module header, allowing the compiler to
check calls to Inc_Ticks.

If the application program calls Inc_Ticks or Get_Ticks (or both), the
module bodies corresponding to the called routines will be compiled. The
compilation of these routines further triggers compilation of the module
body corresponding to ticks because the functions use the variable
ticks.

Technical Reference The Language ¢ 5-9

Macros

Macros can be defined in Dynamic C. A macro is a name replacement
feature. Dynamic C has a text preprocessor that expands macros before
the program text is compiled. The programmer assigns a name to a
fragment of text. Subsequently, Dynamic C replaces the name with the text
fragment wherever the macro name appears in the program (this is a macro
call). In this example,

#define OFFSET 12

#define SCALE 72

int i, x;

i = x * SCALE + OFFSET;
the variable i gets the value x * 72 + 12. Macros can have parameters.
For example,

#define word(a, b) (a<<8 | b)

char c;

int i, j;

i =word(j, c); // same as 1 = (j<<8]|c)
The compiler removes surrounding white space (comments, tabs and
spaces) and collapses each sequence of white space in the macro definition
into one space. It places a \ before any " or \ to preserve their original
meaning within the definition.

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately
following as a string literal. For example, if a macro is defined

#define report(value, fmt)\
printf(#value “=" #fmt “\n”, value)

then the macro in
report(string, %s);
will expand to
printf(“string” “=" “%s” “\n”, string);

and because C always concatenates adjacent strings, the final result of
expansion will be

printf(“string=%s\n”, string);

The ## operator concatenates the preceding character sequence with the
following character sequence, deleting any white space in between. For
example, given the macro

#define set(x,y,z) x ## z ## _ ## v()
the macro in

set(AASC, FN, 6);

5-10 ¢+ The Language Dynamic C 5.x

will expand to
AASC6_FN() ;

For parameters immediately adjacent to the ## operator, the corresponding
argument is not expanded before substitution, but appears as it does in the
macro call.

Generally speaking, Dynamic C expands macro calls recursively until they
can expand no more. Another way of stating this is that macro definitions
can be nested.

The exceptions to this rule are
1. Arguments to the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own
expansion.

The following complex example illustrates this.

#define A B
#define B C
#define uint unsigned int
#define M(x) M ## x
#define MM(x,y,z) x =y ## z
#define string something

#define write(value, fmt)\
printf(#value “=" #fmt “\n”, value)

The code
uint z;
M (M) (A,A,B);
write(string, %s);
will expand first to

unsigned int z; // simple expansion
MM (A,A,B); // M(M) does not expand recursively
printf(“string” “=” “%s” “\n”, string);

// #value - "string" #fmt - "%s"

then to

unsigned int z;

A = AB; // from A = A ## B

printf(“string” “="” “%s” “\n”, something);
// string - something

then to

unsigned int z;
B = AB; // A - B
printf(“string=%s\n”, something);// concatenation

Technical Reference The Language ¢ 5-11

and finally to

unsigned int z;

C = AB; // B - C

printf (“string = %s\n”, something)
Restrictions: The number of arguments in a macro call must match the
number of parameters in the macro definition. An empty parameter list is
allowed, but the macro call must have an empty argument list. Macros are
restricted to 32 parameters and 126 nested calls. A macro or parameter
name must conform to the same requirements as any other C name. The C
language does not perform macro replacement inside string literals or
character constants, comments, or within a #define directive.

A macro definition remains in effect unless removed by an #undef
directive. If an attempt is made to redefine a macro without using #undef,
a warning will appear and the original definition will remain in effect.

Program Flow

Three terms describe the flow of execution of a C program: sequencing,
branching and looping. Sequencing is simply the execution of one
statement after another. Looping is the repetition of a group of statements.
Branching is the choice of groups of statements.

Program flow is altered by “calling” a function, that is transferring control
to the function. Control is passed back to the calling function when the
called function returns.

In the following descriptions, the recommended form allows the program-
mer to enclose any number of statements in the body of a control structure
simply by adding or deleting lines of code. Strictly speaking, the C
language does not require this regularity.

Loops

A while loop tests a condition at the start of the loop. As long as the
expression is true (that is, non-zero), the loop body (statement or com-
pound statement) governed by the while expression will execute. If the
expression is initially false (zero), the program will skip the loop body
altogether.

Recommended form C syntax
whi l e(expression){ whi l e(expression)
sone statenents st at enent
}

5-12 + The Language Dynamic C 5.x

A do loop tests a condition at the end of the loop. As long as the expres-
sion is true (that is, non-zero) the loop body (statement or compound
statement) governed by the while expression will repeat. A do loop
executes at least once before its test. Unlike other controls, the do loop
requires a semicolon at the end.

Recommended form C syntax
do{ do statement whi | e(expression) ;
some statements
}whi | e(expression) ;

The £or loop is more complex: it sets an initial condition (exp,), evaluates
a terminating condition (exp,), and provides a stepping expression (exp,)
that is evaluated at the end of each iteration. Each of the three expressions
is optional.

Recommended form C syntax
for(exp;; exp,; exp;){ for(exp; exp,; exp;) statement
some statements
}

If the end condition is initially false, a for loop body will not execute at
all. A typical use of the £or loop is to count # times.
sum = 0;
for(i = 0; i < n; i++){
sum = sum + arrayl[i];

}

This loops sets i to 0 initially, continues as long as i is less than 7 (stops
when i equals »), and increments i at each pass. Another use for the for
loop is the infinite loop, which is useful in control systems.
for (;;){
some statements

}

Here, there is no initial condition, no end condition, and no stepping
expression. The loop body (some statements) continues to execute
endlessly.

Continue and Break

Two other constructs are available to help in the construction of loops: the
continue statement and the break statement.

Technical Reference The Language ¢ 5-13

The continue statement causes the program control to skip uncondition-
ally to the next pass of the loop.

Example Equivalent Code

get _char(); get _char();
whil e(! ECF){ while(! EOF){

some statements some statements

i f(bad) continue; i f(bad) got o xxx;

more statements mor e statements
} XXX:

}

The break statement causes the program control to jump unconditionally
out of a loop.

Example Equivalent Code
for(i=0;i<n;i++){ for(i=0;i<n;i++){
some statements some statements
i f(cond_RED) break; i f(cond_RED) goto yyy;
more statements more statements
} }
yyy:
more code

The break keyword also applies to the switch/case statement described
in the next section. The break statement jumps out of the innermost
control structure (loop or switch statement) only.

There will be times when break is insufficient. The program will need to
either jump out more than one level of nesting or there will be a choice of
destinations when jumping out. Use a goto statement in such cases. For
example,

while(some statements)
for(i=0;i<n;i++) {
some statements
if(cond RED) goto yyy:’
some statements
if(code BLUE) goto zzz;
more statements

}

Yyy:

handle cond RED
ZZZ:

handle code BLUE

5-14 + The Language Dynamic C 5.x

Branching

The goto statement mentioned previously is the simplest form of branch-
ing statement. Coupled with a statement label, it simply transfers program
control to the labeled statement.

some statements

abc:
other statements
goto abc;

more statements
goto def;

def:
more statements

Notice the colon (:) at the end of the labels.

The next simplest form of branching is the if statement. The simple form
of the if statement tests a condition and executes a statement or com-
pound statement if the condition expression is true (non-zero). The
program will ignore the i£ body when the condition is false (zero).

Recommended form C syntax
i f(expression){ i f(expression) statement
some statements
}

A more complex form of the if statement tests the condition and executes
certain statements if the expression is true, and executes another group of
statements when the expression is false.

Recommended form C syntax
i f(expression) { i f(expr) stmtyel se stmtg
some statementsiif true
}el sef
some statements if false
}

Technical Reference The Language ¢ 5-15

The fullest form of the if statements produces a “chain” of tests.

Recommended form C syntax

i f(expry){ if(expry) stmt

some statements el seif(expry) stmt,
lelse if(expry){ el seif(expr,) s,

some statements el seif(expry) stmts
telse if(expry){

some statements el se stmt,
}el sef

some statements
}

The program evaluates the first expression (expr,). If that proves false, it
tries the second expression (expr,), and continues testing until it finds a
true expression, an else clause, or the end of the if statement. An else
clause is optional. Without an else clause, an if statement that finds no
true condition will execute none of the controlled statements.

The switch statement, the most complex branching statement, allows the
programmer to phrase a “multiple choice” branch differently.

Recommended form

swi t ch(expression) {

case const; :
statements,;
br eak;

case const, :
statements,
br eak;

case consty :
statements;
br eak;

default:

statementSoerauLt

The switch expression is evaluated. It must have an integer value. If one
of the const, expressions matches the switch expression, the sequence of
statements identified by the const, expression is executed. If there is no
match, the sequence of statements identified by the default label is
executed. (The default part is optional.) Unless the break keyword is

5-16 ¢+ The Language Dynamic C 5.x

included at the end of the case’s statements, theprogram will “fall through”
and execute the statements for any number of other cases. The break
keyword causes the program to exit the switch / case statement.

Notice the colons (:) at the end of the cases and after default.

Data

Data (variables and constants) have type, size, structure, and storage class.

Primitive Data Types

Basic, or primitive, data types are provided in Table 5-2.

Table 5-2. Dynamic C Basic Data Types

Type Description

char 8-hit unsigned integer. 8-bit charactersfit
precisely into achar , hence the name.

Range: 0 to 255 (OxFF)

int 16-bit signed integer.
Range: —32,768 to +32,767

unsi gned int 16-bit unsigned integer. In this manual, the term
ui nt is shorthand founsi gnedi nt.

Range: 0 to 65,535

| ong 32-bit signed integer.
Range: —2,147,483,648 to +2,147,483,647

unsi gned | ong 32-bit unsigned integer. In this manual, the term
ul ong is shorthand founsi gned | ong.

Range: 0to Z-1

fl oat 32-bit IEEE floating-point value. The sign bit is 1
for negative values. The exponent has 8 bits,
giving exponents from —127 to +128. The
mantissa has 24 bits. Only the 23 least significant
bits are stored; the high bit is implicitly 1. (Z180
controllers do not have floating point hardware.

Range: —6.085 x #Oto +6.085 x 1&

C supports string constants but not a string data type. (A string in C is
really an array of characters.)

Technical Reference The Language ¢ 5-17

The structures of the primitive data types are shown in relative size in

Figure 5-3.

‘s‘ int ‘

‘ unsigned int ‘

‘ s ‘ long int ‘

‘ unsigned long int ‘

's| exp+127 | mantissa 10..t0199.. float |

Figure 5-3. Structures of Dynamic C Primitive Data Types

Aggregate Data Types
Simple data types can be grouped into more complex aggregate forms.
Array

A data type, whether it is simple or complex, can be replicated in an array.
The declaration

int item[10]; // an array of 10 integers

represents a contiguous group of 10 integers. Array elements are refer-
enced by their subscript.

j = item[n]; // the nth element of item

Array subscripts count up from 0. Thus, item[7] above is the eighth item
in the array. Notice the [and] enclosing both array dimensions and array
subscripts. Arrays can be “nested.” The following doubly dimensioned
array, or “array of arrays”.

int matrix[7][3];
is referenced in a similar way.
scale = matrix[i] [j];

The first dimension of an array does not have to be specified as long as an
initialization list is specified.

int x[]1[2] = { {1, 2}, {3, 4}, {5, 6} };
char string[] = “abcdefg”;

5-18 ¢+ The Language Dynamic C 5.x

Structure

Variables may be grouped together in structures (struct in C) or in
arrays. Structures may be nested.

struct {
char flags;
struct {
int x;
int y;
} loc;
} cursor;

Structures can be nested. Structure members—the variables within a
structure—are referenced using the dot operator.

j = cursor.loc.x
The size of a structure is the sum of the sizes of its components.
Union

A union overlays simple or complex data. That is, all the union members
have the same address. The size of the union is the size of the largest
member.
union {
int ival;
long jval;
float xval;
}ou;

Unions can be nested. Union members—the variables within a union—are
referenced, like structure elements, using the dot operator.

j = u.ival
Composites

Composites of structures, arrays, unions, and primitive data may be
formed. This example shows an array of structures that have arrays as
structure elements.

typedef struct {

int *x;

int c[32]; // array in structure
} node;
node 1list[12]; // array of structures

Refer to an element of array ¢ (above) as shown here.

z = list[n].c[m];

list[0].c[22] = OxFF37;

Technical Reference The Language ¢ 5-19

Storage Classes

Variable storage can be static, auto, or register. These terms apply
to local variables, that is, variables defined within a function. If a variable
does not belong to a function, it is called a global variable—meaning
available anywhere—but there is no keyword in C to represent this fact.
Global variables (not declared within a function) always have static
storage.

The term static means the data occupies a permanent fixed location for
the life of the program. The term auto refers to variables that are placed
on the system stack for the life of a function call.

The term register describes variables that are allocated as if they were
static variables, but their values are saved on function entry and restored
when the function returns. Thus, register variables can be used with
reentrant functions as can auto variables, yet they have the speed of static
variables.

Variables and structures may be created dynamically from free memory
space (the “heap”). The standard C functions malloc and free allocate
and release blocks of storage. Such dynamic variables are neither local
nor global. The program accesses dynamic variables through pointers.
Pointers

A pointer is a variable that holds the 16-bit logical address of another
variable, a structure, or a function. Variables can be declared pointers with
the indirection operator (*).

int *index;
In this example, the variable index is a pointer to an integer. The state-
ment

j = *index;
references the value of the integer by the use of the asterisk. Pointers may
point to other pointers.

int **thing; // ptr to a ptr to an integer

j = **thing; // Jj gets the value ref’d by thing

Conversely, a pointer can be set to the address of a variable using the &
(address) operator.

int *p, thing;
p = &thing;

Then *p and thing have identical values. (But note that p and thing do
not, since p is a pointer and thing is an int.)

5-20 ¢+ The Language Dynamic C 5.x

It is possible to do pointer arithmetic, but this is slightly different from
ordinary integer arithmetic. Here are some examples.

typedef ... xyz; // arbitrary type & size
xyz £[10], *p, *q; // an array and some ptrs

p = &f; // p - array element 0

q = p+5; // g - array element 5
qt+t+; // a4 - array element 6
P=p+q // illegal!

Beware of using uninitialized pointers. Uninitialized

/ pointers can reference ANY location in memory. Storing
data using an uninitialized pointer can overwrite code or
cause a fault.

A common mistake is to declare and use a pointer to char,
thinking there is a string. But an uninitialized pointer is all
there is.

char* string;

strepy(string, “hello”); // invalid!

printf(string); // Invalid!
Pointer checking is a run-time option of Dynamic C. Use
the compiler options command in the OPTIONS menu.

Argument Passing

In C, function arguments are generally passed by value. That is, arguments
passed to a C function are generally copies—on the program stack—of the
variables or expressions specified by the caller. Changes made to these
copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always
passed by address. This policy includes strings (which are character
arrays).

Dynamic C passes structs by value—on the stack. Passing a large
struct takes a long time and can easily cause a program to run out of
memory. Pass pointers to large structs if such problems occur.

For a function to modify the original value of a parameter, pass the address
of, or a pointer to, the parameter and then design the function to accept the
address of the item.

Technical Reference The Language ¢ 5-21

Memory Management

Z180 instructions can specify 16-bit addresses, giving a logical address
space of 64 kbytes (65,536 bytes). Dynamic C supports a 1-megabyte
physical address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit Z180
addresses to 20-bit memory addresses. Three MMU registers (CBAR,
CBR, and BBR) divide the logical space into three sections and map each
section onto physical memory, as shown in Figure 5-4.

CBAR Common/Bank Area Register FFFFF
CBR Common Base Register
BBR Bank Base Register S CBR
CBAR
Com | Bank ,'l//
Frer XMEM
> E000 e
€000
A000
8000 ROOT
6000
4000 - BBR
L > 2000 =22l
0000 BIOS | . BIOS 00000
Logical Space Physical Space

Figure 5-4. Z180 On-Chip Memory Management Unit (MMU) Registers

The logical address space is partitioned on 4-kbyte boundaries. The upper
half of CBAR identifies the boundary between the ROOT memory and
XMEM. The lower half of CBAR identifies the boundary between the BIOS
and the ROOT. The start of the BIOS is always address 0. The two base
registers CBR and BBR map XMEM and ROOT, respectively, onto physical
memory.

Given a 16-bit address, the Z180 uses CBAR to determine whether the
address is in XMEM, BIOS, or ROOT. If the address is in XMEM, the Z180
uses the CBR as the base to calculate the physical address. If the address
is in ROOT, the Z180 uses the BBR. If the address is in the BIOS, the Z180
uses a base of 0.

5-22 + The Language Dynamic C 5.x

A physical address is, essentially,

(base << 12) + logical address.

Figure 5-5 shows the address locations.

Memory Partitions

15 121
L L

logical address
Y

+

I T

LI
base

19

rrrrrrrrrrrrrrr 11T

physical address

Figure 5-5. Z180 Physical Addresses

Table 5-3 explains the memory partitions in Dynamic C.:

Table 5-3. Dynamic C Memory Partitions

Name

Size

Description

Bl CS

8 kbytes

Basic Input/Output System. The BIOSis aways
present and is always mapped to address 0 of ROM
or flash. The Bl OS contains the power-up code, the
communication kernel, and important system
features.

48 kbytes

The area between the Bl OS and XMEM(the bank
area). The root—“normal” memory—resides in a
fixed portion of physical memory. Rootde grows
upward in logical space from address 2000 (hex)
and rootdata (static variables, stack and heap) grqw
down from E0QO. (Initialized static variables are
placed with code, whether in ROM, flash, or RAM.

—

XMEM

8 kbytes

XMEMis essentially an 8-kbyte “window” into
extended physical memorXMEMcan map to any
part of physical memory (ROM, flash, or RAM)
simply by changing the CBR.

Technical Reference

The Language ¢ 5-23

The XMEM area has many mappings to physical memory. The mappings
can change by changing the CBR as the program executes. Extended
memory functions are mapped into XMEM as needed by changing the CBR.
The mapping is automatic in C functions. However, code written in
assembly language that calls functions in extended memory may need to do
the mapping more specifically.

Functions may be classified as to where Dynamic C may load them. The
keywords in Table 5-4 apply to function definitions.

Table 5-4. Memory Keyword Definitions

Keyword Description

r oot The function must be placed in root memory. It can call
functions residing in extended memory.

xnmem The function must be placed in extended memory. Callsto
extended memory functions are not as efficient as callsto
functions in root memory. Long or infrequently used
functions are appropriate for placement in extended memory.

anymem | Thiskeyword lets the compiler decide where to place the
function. A function’s placement depends on the amount jof
reserve memory available. Refetth® Memory Options
command in th©PTIONS menu.

Depending on which compiler options are selected, code segments will be
placed in RAM, ROM, or flash.

Figure 5-6 shows the memory layout with code in RAM.

Code PlacedinRAM [
| __XMEM CODE
>~ RAM
ROOT DATA
FFFF XMEM
E000 ROOT CODE
ROOT DATA
o~ EPROM
ROOT CODE
0000 BIOS > BIOS 00000
Logical Space Physical Space

Figure 5-6. Memory Layout with Code in RAM

5-24 + The Language Dynamic C 5.x

Figure 5-7 shows the memory layout with code in ROM or flash.

Code Placed in /- RAM
ROM or flash
ROOT DATA
FFFF XMEM
E000
ROOT DATA
,,,,,,,,,,,,,,,,,, o~ EPROM
|_____XMEM
ROOTCODE |— | ROOT CODE
0000 BIOS > BIOS 00000
Logical Space Physical Space

Figure 5-7. Memory Layout with Code in ROM or Flash

C Language Elements

A Dynamic C program is a set of files, each of which is a stream of
characters that compose statements in the C language. The language has
grammar and syntax, or rules for making statements. Syntactic elements—
often called tokens—form the basic elements of the C language. Some of
these elements are listed in Table 5-5.

Table 5-5. C Language Elements

keywor ds Words used asinstructions to Dynamic C
nanes Words used to name data

nunber s Lliteral numeric values

strings Literal character values enclosed in quotes
operators Symbols used to perform arithmetic
punctuati on | Symbols used to mark beginnings and endings
directives Words that start with # and control compilation

Keywords

A keyword is a reserved word in C that represents a basic C construct. The
word while represents the beginning of a “while” loop. It cannot be used
for any other purpose. There are many keywords, and they are summa-
rized in the following pages.

Technical Reference The Language ¢ 5-25

abort—Jumps out of a costatement.
for (; /) {
costate {

if(condition) abort;
}

~We See Chapter 7, Costatements.

anymem—Allows the compiler to determine in which part of memory a
function will be placed.

anymem int func() {

}
#memmap anymem
#asm anymem
#eﬁé;sm
auto—A local function variable is located on the system stack and exists
as long as the function call does.
int func() {

auto float x;

}
break—Jumps out of a loop, if, or case statement.

while(expression) {

if(condition) break;

}

switch(expression){
case 3:

break;

5-26 ¢+ The Language Dynamic C 5.x

case—Identifies the next “case” in a switch statement.
switch(expression){
case const

case const:

case const:

}

char—Declares a variable, or array, as a type character. This type is also
commonly used to declare 8-bit integers and “Boolean” data.

char ¢, x, *string = “hello”;
int i;
c = (char)i;

continue—SKkip to the next iteration of a loop.

while(expression) {
if(nothing to do) continue;

}

costate—Indicates the beginning of a costatement.
costate [name [state]] {
}

Name can be absent. If name is present, state can be always_on
orinit_on. Ifstate is absent, the costatement is initially off.

See Chapter 7, Costatements, and keywords abort, yield,
&o and waitfor.

debug—Indicates a function is to be compiled in debug mode.

debug int func() {

}
#fasm debug

#endasm

AN See also nodebug and directives #debug and #nodebug.

Technical Reference The Language ¢ 5-27

default—Identifies the default “case” in a switch statement. The
default case, which is optional, executes only when the switch
expression does not match any other case.

switch(expression){
case const
caéé.const:
deé;ﬁlt:

}

do—Indicates the beginning of a do loop. A do loops tests at the end and
executes at least once.

do

while(expression) ;
The statement must have a semicolon at the end.
else—Indicates a false branch of an if statement.

if(expression)

statement // executes when true
else
statement // executes when false

extern—Indicates that a variable is defined in the BIOS, later in a
library file, or in another library file. Its main use is in module
headers.

/*** BeginHeader ..., var */
extern int var;

/*** EndHeader */
int var;

firsttime—Declares a function to be a waitfor delay function.

é?‘ / For details, see Chapter 7, Costatements.

float—Declares a variable, function, or array, as 32-bit IEEE floating
point.

int func() {
float x, y, *p;
float PI = 3.14159265;

}
float func(float par) {

}
5-28 ¢+ The Language Dynamic C 5.x

for—Indicates the beginning of a for loop. A for loop has an initializ-
ing expression, a limiting expression, and a stepping expression.
Each expression can be empty.

for(;;) // an endless loop

}
for(i =0; i < n; i++) // counting loop

}
goto—Causes a program to go to a labeled section of code.

if(condition) goto RED;

RED:

Statements
Use goto to jump forward or backward in a program. Never use
goto to jump info a loop body or a switch case. The results are
unpredictable. However, it is possible to jump out of a loop body
or switch case.

if—Indicates the beginning of an if statement.
if (tank_full) shut off water();

if(expression){
statements

lelse if(expression){
statements

lelse if(expression){
statements

lelse if(expression){
statements

}else({
statements

}

If one of the expressions is true (they are evaluated in order), the
statements controlled by that expression are executed.

An if statement can have zero or more else if parts. The else
part is optional and executes when none of the if expressions is
true (non-zero).

Technical Reference The Language ¢ 5-29

int—Declares a variable, function, or array to be an integer. If nothing
else is specified, int implies a 16-bit signed integer.

int i, j, *k; // 1l6-bit signed
unsigned int x; // 1l6-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned

int funct (int arg){

}
interrupt—Indicates that a function is an interrupt service routine.

interrupt isr () {

}
An interrupt service routine returns no value and takes no argu-
ments.

yrwve See also ret, reti, and retn.

long—Declares a variable, function, or array to be 32-bit integer. If
nothing else is specified, 1ong implies a signed integer.

long i, j, *k; // 32-bit signed
unsigned long int w; // 32-bit unsigned

long funct (long arg) {

}

main—Identifies the main function. All programs start at the beginning
of the main function. (This is actually not a keyword, but is a
function name.)

nodebug—Indicates a function is not compiled in debug mode.
nodebug int func() {

}
#asm nodebug

#endasm

yANA See also debug and directives #debug and #nodebug.

5-30 ¢+ The Language Dynamic C 5.x

norst—Indicates that a function does not use the RST instruction for
break points.

norst void func|() {

}

nouseix—Indicates a function does not use the IX register as a stack
frame reference pointer.

nouseix void func() {

}
& See also useix and directives #useix and #nouseix.

NULL—The null pointer. (This is actually a macro, not a keyword.) Same
as (void *)O0.

pop—A keyword used in conjunction with certain directives (#memmap
and #class). These directives can push and pop their states.

#memmap root
root functions

#memmap push xmem
xmem functions here
#memmap pop

now back to root functions

protected—Declares a variable to be “protected” against system
failure. This means that a copy of the variable is made before it is
modified. If a transient effect such as power failure occurs while
the variable is being changed, the system will restore the variable
from the copy.

main () {
protected int statel, state2, state3;

}

push—A keyword used in conjunction with certain directives (#memmap
and #class). These directives can push and pop compilation
modes.

#class static // static local vars are default
#class push auto // auto local vars are default

#class pop // now back to static

Technical Reference The Language ¢ 5-31

register—Declares the storage class of a variable. The variable has the
speed of a static variable, yet can be used in reentrant functions.

int func() {
register float x, y;
register int i;

}

ret—Indicates that an interrupt service routine (written in C) uses the
ret instruction.

interrupt ret isr (){

}

AN See also interrupt.

reti—Indicates that an interrupt service routine (written in C) uses the
reti instruction.

interrupt reti isr () {

}

yrwve See also interrupt.

retn—Indicates that an interrupt service routine (written in C) uses the
retn instruction.

interrupt retn isr () {

}
& See also interrupt.

return—Explicit return from a function. For functions that return
values, this will return the function result.

void func () {
if(expression) return;

}

float func (int x) {
...float temp;

return(temp * 10 + 1);
}

5-32 ¢+ The Language Dynamic C 5.x

root—Indicates a function is to be placed in root memory.

root int func() {

}
#memmap root
#asm root
#endasm
segchain—Identifies a function chain segment (within a function).

int func (int arg){
...int vec[10];

segchain _GLOBAL_ INIT({
for(i = 0; i<10; i++){ vec[i] = 0; }
}

}

This example adds a segment to the function chain
_GLOBAL_INIT. When this function chain executes, this and
perhaps other segments elsewhere execute. The effect in this
example is to (re)initialize vec.

shared—Indicates that changes to a multi-byte variable (such as a
float) are atomic. Interrupts are disabled while the variable is
being changed. Local variables cannot be shared.

shared float x, y, z;
shared int j;

main () {
}

If i is a shared variable, expressions of the form i++

(ori = i + 1) constitute fwo atomic references to variable i, a
read and a write. Be careful because i++ is not an atomic opera-
tion.

short—Declares that a variable or array is short integer (16 bits). If
nothing else is specified, short implies a 16-bit signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-bit, unsigned

short funct (short arg){

}

Technical Reference The Language ¢ 5-33

size—Declares a function to be optimized for size (as opposed to speed).

size int func (){

}

sizeof—A built-in function that returns the size—in bytes—of a
variable, array, structure, union, or of a data type.

j = 2 * sizeof (float);
int 1list[] = { 10, 99, 33, 2, -7, 63, 217 };

x = sizeof (list);
speed—Declares a function to be optimized for speed (as opposed to
size).

speed int func () {

}

static—Declares a local variable to have a permanent fixed location in
memory, as opposed to auto, where the variable exists on the
system stack. Global variables are by definition static. Local
variables are static by default, unlike standard C.

int func (){

...int i; // static by default
static float x; // explicitly static
}
struct—Indicates the beginning of a structure definition.
struct {
...int x;
int y;
} abc; // defines a struct object
typedef struct {
...int x;
int y;
} xyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz

Structure definitions can be nested.

5-34 + The Language Dynamic C 5.x

subfunc—Begins the definition of a subfunction. A subfunction
encapsulates a useful code sequence and reduces the amount of
storage required by the parent function.

func () {
int aname() ;
subfunc aname: { k = inport (x); k + 4; }

aname () ;

aname () ;

& See Appendix B, Efficiency, for details.

switch—Indicates the start of a switch statement.

switch(expression){
case const

break;
case const
break;
case const
break
default
}

The switch statement may contain any number of cases. It com-
pares a case-constant expression with the switch expression. If
there is a match, the statements for that case execute. The default
case, if it is present, executes if none of the case-constant expres-
sions match the switch expression.

If the statements for a case do not include a break, return,
continue, or some means of exiting the switch statement, the
cases following the selected case will execute, too, regardless of
whether their constants match the switch expression.

Technical Reference The Language ¢ 5-35

typedef—Identifies a type definition statement. Abstract types can be
defined in C.

typedef struct {

int x;

int y;
} xyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz

typedef uint node; // meaningful type name
node master, slavel, slave2;

union—Identifies the beginning of a “union.” Items in a union have the
same address. The size of a union is that of its largest member.

union {
int x;
float y;
} abc; // overlays a float and an int

unsigned—Declares a variable or array to be unsigned. If nothing else
is specified in a declaration, unsigned means 16-bit unsigned

integer.

unsigned i, j, *k; // l6-bit, unsigned
unsigned int x; // l6-bit, unsigned
unsigned long w; // 32-bit, unsigned

unsigned funct (unsigned arg) {

}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead
of 32768 to +32767. Values in an unsigned long integer range
from 0 to 2%2-1.

useix—Indicates that a function uses the IX register as a stack frame
pointer.

useix void func() {
}

yrwve See also nouseix and directives #useix and #nouseix.

5-36 ¢+ The Language Dynamic C 5.x

waitfor—Used in a costatement, this keyword identifies a point of
suspension pending the a condition, completion of an event, or a
delay.

for (; /) {
costate {
...waitfor(input(l) == HIGH);

}

& See Chapter 7, Costatements.

while—Identifies the beginning of a while loop. A while loop tests at the
beginning and may execute zero or more times.

while(expression) {

}

xdata—This keyword, available only in Dynamic C Deluxe, declares a
block of data in extended memory. There are two forms.

xdata name { value 1 , ... value n };
xdata name [n 1;

The name of the block represents the 20-bit physical address of the
block.

The value list of the first form may include constant expressions of
type int, £loat, uint, long, ulong, char, and (quoted) strings.

xmem—Indicates that a function is to be placed in extended memory.

xmem int func() {

}
#memmap xmem

xmemok—Indicates that assembly-language code embedded in a C
function can be compiled to extended memory.

#asm xmemok
#endasm

This keyword does not apply to C functions or to #memmap.

Technical Reference The Language ¢ 5-37

xstring—This keyword, available only in Dynamic C Deluxe, declares
a table of strings in extended memory. The table entries are 20-bit
physical addresses. The name of the table represents the 20-bit
address of the table.

xstring name { string 1, ... string n };

yield—Used in a costatement, this keyword causes the costatement to
pause temporarily, allowing other costatements to execute. The
yield statement does not alter program logic, but merely postpones
it.
for (;;){
costate {

...long computation
yield;

& See Chapter 7, Costatements.

Names

Names identify variables, certain constants, arrays, structures, unions,
functions, and abstract data types. Names must begin with a letter or an
underscore (), and thereafter must be letters, digits, or an underscore.
Names may not contain any other symbols, especially operators. Names
are distinct up to 16 characterss, but may be longer. Names may not be the
same as any keyword. Names are case-sensitive.

Examples
my function // ok
_block // ok
test32 // ok
jumper- // not ok, uses a minus sign
3270type // not ok, begins with digit

Cleanup_the data now // These names are
Cleanup_the_data later// not distinct!

References to structure and union elements require “compound” names.
The simple names in a compound name are joined with the dot operator
(period).

cursor.loc.x = 10; // set structure element to 10

5-38 ¢+ The Language Dynamic C 5.x

Use the #define directive to create names for constants. These can be
viewed as symbolic constants. See Macros, previously discussed.

#define READ 010
#define WRITE 020
#define ABS 0
#define REL 1
#define READ ABS READ + ABS
#define READ REL READ + REL

The term READ_ABS is the same as 010 + 0 or 10, and READ_REL is the
same as 010 + 1 or 11. Note that Dynamic C does not allow anything to be
assigned to a constant expression.

READ ABS = 27; // produces compiler error
// because 010 + 1 is 10

Numbers

Numbers are constant values and are formed from digits, possibly a
decimal point, and possibly the letters U, L, X, or A—F, or their lower case
equivalents. A decimal point or the presence of the letter E or F indicates
that a number is real (has a floating-point representation).

Integers have several forms of representation. The normal decimal form is
most common.

10 -327 1000 0

An integer is long (32-bit) if its magnitude exceeds the 16-bit range
(-32768 to +32767) or if it has the letter L appended.

OL -32L 45000 32767L

An integer is unsigned if it has the letter U appended. It is long if it also
has L appended or if its magnitude exceeds the 16-bit range:

(0]} 42949672940 327670 1700UL

An integer is hexadecimal if preceded by 0x.
Ox7E 0xE000 OxFFFFFFFA

It may contain digits and the letters a—£ or A-F.

An integer is octal if begins with zero and contains only the digits 0—7.
0177 020000 000000630

A real number can be expressed in a variety of ways.

4.5 means 4.5

4f means 4.0
0.3125 means 0.3125
456e-31 means 456 x 107!
0.3141592e1 means 3.141592

Technical Reference The Language ¢ 5-39

Strings and Character Data

A string is a group of characters enclosed in double quotes (“”).
“Press any key when ready...”

Strings in C have a terminating null byte appended by the compiler.

Although the C language does not have a string data type, it does have

character arrays that serve the purpose. Dynamic C does not have string
operators, such as concatenate, but library functions are available.

AN See STRING.LIB in the Dynamic C Function Reference
manual.

Strings are multi-byte objects, and as such they are always referenced by
their starting address, and usually by a char* variable. The following
example illustrates typical usage. Note that passing a pointer to a string is
the same as passing the string.

char* select = “Select option\n”;

char start[32];
strcpy (start,”Press any key when ready...\n”);

printf(select); // pass pointer to string

printf(start); // pass string

Character constants have a slightly different meaning. They are not
strings. A character constant is enclosed in single quotes (' ')and is a
representation of an 8-bit integer value.

\ a ’ Al \nl \ \xlB 4
Any character can be represented by an alternate form, whether in a

character constant or in a string. Thus, nonprinting characters and charac-
ters that cannot be typed may be used.

A character can be written using its numeric value preceded by a
backslash.

\x41 // the hex value 41

\101 // the octal wvalue 101

\B10000001 // the binary wvalue 10000001
There are also several “special” forms preceded by a backslash.

\a bell \b backspace

\f formfeed \n newline

\r carriage return \t tab

\v vertical tab \0 null char
\\ backslash \c¢ the actual character c
\’ single quote \” double quote

5-40 ¢+ The Language Dynamic C 5.x

Examples
“He said \”Hello.\”” // embedded double quotes
char j = ‘Z’; // character constant

char* MSG = “Put your disk in the A drive.\n”;
// embedded newline at end

printf(MSG) ; // print MSG

char* default = “”;
// empty string: a single null byte

Operators

An operator is a symbol such as +, —, or & that expresses some kind of
operation on data. Most operators are binary—they have two operands.

a + 10 // two operands with binary operator “add”
Some operators are unary—they have a single operand,
—amount // single operand with unary “minus”

although, like the minus sign, some unary operators can also be used for
binary operations.

There are many kinds of operators with operator precedence. Precedence
governs which operations are performed before other operations, when
there is a choice.

For example, given the expression
a=b+c* 10;
will the + or the * be performed first? Since * has higher precedence than
+, it will be performed first. The expression is equivalent to
a=>b+ (c * 10);
Parentheses can be used to force any order of evaluation. The expression
a= (b +c) * 10;
uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal prece-
dence. Again, parentheses can circumvent the normal associativity of
operators. For example,

a=b+c+d; // (b+c) performed first

a=b+ (c +4d); // now c+d is performed first
int *a(); // function returning ptr to int
int (*a) () // ptr to function returning int

Unary operators and assignment operators associate from right to left.
Most other operators associate from left to right.

Technical Reference The Language ¢ 5-41

Certain operators, namely *, &, (), [], ->and . (dot), can be used on the
left side of an assignment to construct what is called an /value. For
example,

float x;

* (char*) &x = 0x17; // low byte of x gets value
When the data types for an operation are mixed, the resulting type is the
more precise.

float x, y, z;
int 1, j, k;

char c;
z =1/ x; // same as (float)i / x
i=k + c; // same as k + (int)c

By placing a type name in parentheses in front of a variable, the program
will perform type casting or type conversion. In the example above, the
term (£loat) i means the “the value of i converted to floating point.”

The operators are summarized in the following pages.

() Grouping. Expressions enclosed in parentheses are performed first.
Parentheses also enclose function arguments. In the expression

a= (b +c) * 10;
thetermb + cis evaluated first.
[1 Array subscripts or dimension.
int a[l2]; // array dimension is 12
j = al[i]; // references the ith element
All array subscripts count from 0.

The dot operator joins structure (or union) names and subnames in
a reference to a structure (or union) element.

struct {
int x;
int y;
} coord;
m = coord.x;
-> Right arrow. Used with pointers to structures and unions, instead
of the dot operator.

typedef struct{

int x;
int y;
} coord;
coord *p; // ptr to structure
m = p->x; // ref to structure element

5-42 + The Language Dynamic C 5.x

++

Logical NOT. This is a unary operator. Observe that C does not
provide a Boolean data type. In C, logical FALSE is equivalent to
0. Logical TRUE is equivalent to non-zero. The NOT operator
result is 1 if the operand is 0. The result is 0 otherwise.

test = get_input(...);
if('test){

}

Bitwise complement. This is a unary operator. Bits in a char,
int, or long value are inverted:

int switches;
switches = O0xFFFO;
j = ~switches; // j becomes 0x000F

Pre- or post-increment. This is a unary operator designed primarily
for convenience. If the ++ precedes an operand, the operand is
incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, a[l2];

i=0;

q = a[i++]; // q gets a[0], then i becomes 1
r = a[i++]; // r gets a[l], then i becomes 2
s = ++i; // 1 becomes 3, then s = 1

it++; // 1 becomes 4

If the ++ operator is used with a pointer, the value of the pointer
increments by the size of the object (in bytes) to which it points.
With operands other than pointers, the value increments by 1.

Pre- or post-decrement. This is a unary operator designed for
convenience. If the —— precedes an operand, the operand is
decremented before use. If the —— operator follows an operand, the
operand is decremented after use.

int j, a[l2];

j = 12;
q = al-j]; // 3 becomes 11, then g gets a[ll]
r = a[-j]; // j becomes 10, then r gets a[l0]
s = j—; // s = 10, then j becomes 9

= // j becomes 8

If the — operator is used with a pointer, the value of the pointer
decrements by the size of the object (in bytes) to which it points.
With operands other than pointers, the value decrements by 1.

Technical Reference The Language ¢ 5-43

+ Unary plus, or binary addition. (Standard C does not have unary
plus.) Unary plus does not really do anything.

a=>b+ 10.5; // binary addition
z = +y; // just for emphasis!

- Unary minus, or binary subtraction.

a=>b - 10.5; // binary subtraction
z = -y; // z gets the negative of y
* Indirection, or multiplication. As a unary operator, it indicates

indirection. When used in a declaration, the * indicates that the
following item is a pointer. When used as an indirection operator
in an expression, the * provides the value at the address specified

by a pointer.

int *p; // p 1s a pointer to integer

int j = 45;

P = &j; // p now points to j.

k = *p; // k gets the value to which p
// points, namely 45.

*p = 25; // The integer to which p

// points gets 25. Same as j = 25,
// since p points to j.

Beware of using uninitialized pointers. Also, the indirection
operator can be used in complex ways.

int *1list[10] // array of 10 ptrs to int
int (*list) [10] // ptr to array of 10 ints
float** y; // ptr to a ptr to a float
z = **y; // z gets the value of y

typedef char **stp;
stp my_ stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.
a=b * ¢c; // a gets the product of b and c

(type) “Cast” operator. The cast operator converts one data type to
another. Floating-point values are truncated when converted to
integer. The bit patterns of character and integer data are not
changed with the cast operator, although high-order bits will be lost
if the receiving value is not large enough to hold the converted
value.

5-44 + The Language Dynamic C 5.x

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // i gets 10;

c = *(char*)é&x; // c gets the low byte of x
typedef typeA;

typedef typeB;

typeA iteml;
typeB item2;
item2 = (typeB)iteml;// forces iteml to be

// treated as a typeB

Address operator, or bitwise AND. As a unary operator, this
provides the address of a variable:
int x;

zZ = &X; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer
(char, int, or long) values.

int i = OxFFFO;
int j = OxOFFF;
z=1& 3j; // z gets 0xO0FFO0

sizeof—The sizeof operator is a unary operator that returns the size

(in bytes) of a variable, structure, array, or union. It operates at
compile time as if it were a built-in function, taking an object or a
type as a parameter.

typedef struct({
int x;
char y;
float z;
} record;
record array[100];
int a, b, ¢, d;
char cc[] = “Fourscore and seven”;
char *list[] = { “ABC”, “DEFG”, “HI” };
// number of bytes
#define array size sizeof (record)*100

in array

a = sizeof(record); // 7
b = array size; // 700
c = sizeof(cc); // 20
d = sizeof(list); // 6

Why is sizeof (list) equal to 6? List is an array of 3 pointers
(to char) and pointers have two bytes.

Why is sizeof (cc) equal to 20 and not 19?7 C strings have a
terminating null byte appended by the compiler.

Technical Reference

The Language ¢ 5-45

<<

>>

Divide. This is a binary operator. Integer division truncates;
floating-point division does not.

int 1 =18, j = 7, k; float x;

k=1i/ j; // result is 2;

x (float)i / j; // result is 2.591...

Modulus. This is a binary operator. The result is the remainder of
the left-hand operand divided by the right-hand operand.

int i = 13;
j=1i % 10; // j gets i mod 10 or 3
int k = -11;
=k % 7; // 3 gets k mod 7 or -4

Shift left. This is a binary operator. The result is the value of the
left operand shifted by the number of bits specified by the right
operand:

int i = OxFOOF;
j =i<< 4; // j gets 0x00F0

The most significant bits of the operand are lost; the vacated bits
become zero.

Shift right. This is a binary operator. The result is the value of the
left operand shifted by the number of bits specified by the right
operand:

int i = O0xFOOF;
j=1i> 4; // 3 gets 0x0F00

The least significant bits of the operand are lost; the vacated bits
become zero.

Less than. This binary (relational) operator yields a “Boolean”
value. The result is 1 if the left operand < the right operand, and 0
otherwise.
if(i<3){

body // executes if 1 < j

}
OK = a < b; // true when a < b

Less than or equal. This binary (relational) operator yields a
“Boolean” value. The result is 1 if the left operand < the right
operand, and 0 otherwise.
if(i<=3){

body // executes if i <= j

}
OK = a <= b; // true when a <= Db

5-46 ¢+ The Language Dynamic C 5.x

Greater than. This binary (relational) operator yields a “Boolean”
value. The result is 1 if the left operand > the right operand, and 0
otherwise.
if(1i>3){

body // executes if 1 > j

}
OK = a > b; // true when a > b

Greater than or equal. This binary (relational) operator yields a
“Boolean” value. The result is 1 if the left operand > the right
operand, and 0 otherwise.
if(i >= 3){

body // executes if i >= j
}

OK = a >= b; // true when a >= b

Equal. This binary (relational) operator yields a “Boolean” value.
The result is 1 if the left operand equals the right operand, and 0
otherwise.

if(i==3){

body // executes if 1 = j
}
OK = a == b; // true when a = b
Note that the == operator is not the same as the assignment
/ operator (=). A common mistake is to write

if(i=3){
body
}

Here, i gets the value of j, and the if condition is true
when i is non-zero, not when i equals j.

Not equal. This binary (relational) operator yields a “Boolean”
value. The result is 1 if the left operand # the right operand, and 0
otherwise.
if(i =3)¢

body // executes if 1 != j

}
OK = a != b; // true when a != Db

Bitwise exclusive OR. A binary operator, this performs the bitwise
XOR of two integer (8-bit, 16-bit or 32-bit) values.

int i = OxFFFO;
int j = OxOFFF;
z=1i"3; // z gets O0xFOOF

Technical Reference The Language ¢ 5-47

&&

Bitwise inclusive OR. A binary operator, this performs the bitwise
OR of two integer (8-bit, 16-bit or 32-bit) values.

int i = OxFFO00;

int j = O0xOFFO;

z=1i| j; // z gets OxFFFO

Logical AND. This is a binary operator that performs the “Bool-
ean” AND of two values. If either operand is 0, the result is 0
(FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. This is a binary operator that performs the “Boolean”
OR of two values. If either operand is non-zero, the result is 1
(TRUE). Otherwise, the result is 0 (FALSE).

Conditional operators. This is a three-part operation unique to the
C language. It has three operands and the two operator symbols ?
and :. If the first operand evaluates true (non-zero), then the result
of the operation is the second operand. Otherwise, the result is the
third operand.

int i, j, k;
i=3j<k?3:k;

The ? : operator is for convenience. The above statement is
equivalent to the following.

if(jJ <k)
i=3j;
else
i=k;

If the second and third operands are of different type, the result of
this operation is returned at the higher precision.

Assignment. This binary operator causes the value of the right
operand to be assigned to the left operand. Assignments can be
“cascaded” as shown in this example.

a=10 * b + c; // a gets the result of
// the calculation
a=Db=0; // b gets 0 and a gets 0

Addition assignment.
a +=5; // Add 5 to a. Same as a = a + 5
Subtraction assignment.

a -=5; // Subtract 5 from a.
// Same as a = a - 5

5-48 ¢+ The Language Dynamic C 5.x

<<=

>>=

Multiplication assignment.

a *= 5; // Multiply a by 5.
// Same as a = a * 5

Division assignment.

a /=5; // Divide a by 5.
// Same as a = a / 5

Modulo assignment.

a %= 5; // a mod 5. Same as a = a % 5
Left shift assignment.
a <<= 5; // Shift a left 5 bits.
// Same as a = a << 5
Right shift assignment.
a >»>=5; // Shift a right 5 bits.
// Same as a = a >> 5
Bitwise AND assignment.
a & b; // AND a with b.

// Same as a = a & b
Bitwise XOR assignment.

a *= b; // XOR a with b.
// Same as a = a ~ b

Bitwise OR assignment.

a |=b; // OR a with b.
// Same as a = a | b

Comma operator. This operator, unique to the C language, is a
convenience. It takes two operands: the left operand—typically an
expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes
the result of the operation.

This example shows somewhat complex initialization and stepping
in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,3-){

}

Because of the comma operator, the initialization has two parts: (1)
set i to 0 and (2) get the length of string s. The stepping expres-
sion also has two parts: increment i and decrement j.

The comma operator exists to allow multiple expressions in loop-
or if conditions.

Technical Reference The Language ¢ 5-49

Table 5-6 shows the operator precedence, from highest to lowest. All

operators grouped together have equal precedence.

Table 5-6. Operator Precedence

Operators Associativity
O[] -> left to right
'~ ++ -- - (type) * & sizeof right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= I= left to right
& |eft to right
n |eft to right
| left to right
&& |eft to right
|] left to right
? right to left
= 4= -= ec.. right to left
, (comma) left to right
Directives

Directives are special keywords prefixed with the symbol #. They tell the
compiler how to proceed. Only one directive per line is allowed, but a
directive may span more than one line if a backslash (\) is placed at the

end of the line(s).

e #asm [options...]
#endasm
Begins and ends blocks of assembly code. The following options are
available.
nodebug disable debug code during assembly
debug enable debug code during assembly
xmemok

is embedded in a C function

OK to compile to extended memory when assembly code

5-50 + The Language

Dynamic C 5.x

¢ #class [push] [options...]
#class pop

Controls the default storage class for local variables. The following
options are available.

auto local variables are placed on the stack
static local variables have permanent, fixed storage
These options are nestable to 16 levels using the push and pop options.

¢ jdebug
#nodebug

Enables or disables debug code compilation.

o j#define name text
#define name(params...) text

Defines a macro with or without parameters. A macro without param-
eters may be considered a symbolic constant. (But in actuality it is
not.)

o #fatal “.”
#ferror “..”
#warns “..”
#warnt “..”

Instructs the compiler to act as if a fatal error (#£atal), an error
(#error), a serious warning (#warns) or a trivial warning (#warnt)
was issued. The string in quotes following the directive is the message
to be printed.

e #funcchain chain-name name
Adds a function, or another function chain, to a function chain.

e #if constant expression
#elif constant expression
#else
#endif

These directives control conditional compilation. Combined, they can

form a multiple-choice i£. When the condition of one of the choices is
met, the Dynamic C code selected by the choice is compiled, whatever

it may be. Code belonging to the other choices is ignored entirely.

Technical Reference The Language ¢ 5-51

main () {
#if BOARD_TYPE ==

#define product “Ferrari”
#elif BOARD TYPE ==

#define product “Maserati”
#elif BOARD TYPE ==

#define product “Lamborghini”
#else

#define product “Chevy”
#endif

}

The #elif and #else directives are optional. Any code between an
#else and an #endif is compiled when all of the expressions are
false.

o #ifdef name
#ifndef name

Similar to the #if above, these directives enable and disable code
compilation, respectively, based on whether the name has been defined
with a #define directive.

e #interleave
#inointerleave

Controls whether Dynamic C will intersperse library functions with the
program’s functions during compilation. #nointerleave forces the
user-written functions to be compiled first.

e #KILL name
To redefine a symbol found in the BIOS of a controller, first “kill” the
prior name.

e j#makechain chain-name

Creates a function chain. When a program executes the function chain
named in this directive, all of the functions or segments belonging to
that chain execute.

e f#memmap [push] [options...]
#memmap pop

Controls the default memory area for functions. The following options
are available.

anymem the compiler decides where to place functions
root functions in root memory
xmemfunctions in extended memory

These options are nestable to 16 levels using the push and pop options.

5-52 ¢+ The Language Dynamic C 5.x

¢ {#undef name
Removes (undefines) a defined macro.
e #use pathname

Activates a library (named in LIB.DIR) so modules in the library can
be linked with the application program. This directive immediately
reads in all the headers in the library unless they have already been
read.

e #useix
#nouseix

Controls whether functions use the IX register as a stack frame refer-
ence pointer or the SP (stack pointer) register.

Punctuation

Punctuation marks serve as boundaries in C programs. Table 5-7 lists the
punctuation marks.

Table 5-7. Punctuation Marks

Symbols Description

Terminates a statement label.

; Terminates a simple statement (or ado loop). C requires
these!

, Separatesitemsin alist, such as an argument list, declaration
list, initialization list or expression list.

() Encloses argument or parameter lists. Function calls always
reguire parentheses. Macros with parameters also require
parentheses.

{} Begins and ends a compound statement, a function body, a

structure or union body, or encloses a function chain segment.

Extended Memory Data

Most of the details of calling extended memory functions are handled by
the compiler. The situation is more complicated for extended data. To
access extended memory data, use function calls to exchange data between
extended memory and root memory. These functions are provided in the
Dynamic C libraries.

é‘b/“ See XMEM. LIB.

Technical Reference The Language ¢ 5-53

Extended memory addresses are 20-bit physical addresses (the lower 20
bits of a long integer). Pointers, on the other hand, are 16-bit machine
addresses. They are not interchangeable. However, there are library
functions to convert address formats.

Dynamic C includes two nonstandard keywords to support extended
memory data: xstring and xdata.

The declaration
xstring name { string 1, ... string n };

defines a table of 20-bit physical string addresses and corresponding
strings. The term name represents the 20-bit physical address of the table.

name ——>| table | —> "abe"
| > "start"

| L—> "stop"
L’ "on"
NofEN

The xdata statement has two forms. The declaration

20-bit
addresses

xdata name { value 1, ... value n };

defines a block of initialized extended memory data. The values must be
constant expressions of type char, int, unsigned int, long, un-
signed long, float, Or string.

name —>| 10

5.73 |
a

65575L |
"start" ‘

The other form
xdata name [n 1;

defines a block of 7 bytes in extended memory.

name —>

n bytes

In either case, the term name represents the 20-bit (physical) address of the
block.

yrwve See XDATA. C in the SAMPLES subdirectory for more details.

5-54 + The Language Dynamic C 5.x

[/}

Using AssemBLY LANGUAGE

Technical Reference Using Assembly Language ¢+ 6-1

Dynamic C permits programing in assembly language. Assembly-language
statements may either be embedded in a C function or entire functions may
be written in assembly language. C statements may also be embedded in
assembly code and refer to C-language variables in the assembly code.

A program may be debugged at the assembly language level by opening
the assembly window. Single-stepping and break points are supported in
the assembly window.

When the assembly window is open, single-stepping occurs instruction by
instruction rather than statement by statement.

Use the #asm and #endasm directives to place assembly code in pro-
grams. For example, the following function will add two 64-bit numbers
together.

useix int eightadd(char *chl, char *ch2) {

#asm
1d 1, (ix+ch2) ; get dest ptr to hl
1d h, (ix+ch2+1)
1d e, (ix+chl) ; get src ptr to de
1d d, (ix+chl+1l)
1d b,8 ; number of bytes
XOR a ; clear carry
loop:
1d a, (de) ; chl source byte
adc a, (hl) ; add ch2 byte
1d (hl) ,a ; result to ch2 addr
inc hl
inc de
djnz loop ; do 8 bytes
#endasm
return;

}

The same program could be written in C, but it would be many times
slower because C does not provide an add-with-carry operation (adc).

A C statement may be placed within assembly code by placing a C in
column 1.

The keyword nodebug can be placed on the same line as #asm. The main
reason for the nodebug option is to prevent Dynamic C from running out
of debugger table memory, which is limited to about 5,000 break points for
the entire program (not counting libraries). If nodebug is specified for an
entire function, then all the blocks of assembly code within the function are
assembled in nodebug mode. There is no need to place the nodebug
directive on each block.

6-2 ¢+ Using Assembly Language Dynamic C 5.x

Register Summary
Figure 6-1 shows the Z180’s basic register set.

General Alternate Special
Registers Registers Registers
A F A F | R
B c B c IX (index)
D E D' E' 1Y (index)
H L H L' SP (stack pointer)
PC (program counter)

Figure 6-1. Z180 Basic Register Set

Register A is the accumulator. Registers B—L are general-purpose registers
and can be coupled in pairs BC, DE, HL for 16-bit values. Registers B, C,
D, and E may also be coupled (and called BCDE) for 32-bit values.
Register F (flags) holds status bits.

Flags S: sign bit Z: zero bit
‘ s ‘ 7 ‘ ‘ H ‘ ‘P/V‘ N ‘ c H: half-carry P/V: parity or overflow
7 6 5 4 3 2 1 o N: negative op C: carry

The alternate set of registers (A’—L’) is often used to save and restore
register values.

&

Refer to the Zilog Z180 MPU User’s Manual for instruc-
tions to swap register sets.

The PC is the program counter; SP is the stack pointer. The IX and I'Y
registers are index registers. The I register is the interrupt vector register.
(The R register may be ignored.)

Dynamic C uses the HL register pair (1) to pass the first 16-bit argument,
and (2) to return a 16-bit function result. Dynamic C uses the BCDE
register group (1) to pass the first 32-bit argument and (2) to return a 32-
bit function result.

The Z180 has many other special-purpose registers.

General Concepts

Place a body of assembly code between the #asm directives.
#asm [options]
#endasm

The #asm directive accepts options.

& See Directives in Chapter 5, The Language, for details.

Technical Reference Using Assembly Language ¢ 6-3

Comments

Comments in embedded assembly code starts with a semicolon (;). The
assembler ignores all text from the semicolon to the end of line.

Labels

A label is a name followed by one or two colons (:). A label followed by a
single colon is /ocal, whereas one followed by two colons is global. A
local label is not visible to the code out of the current embedded assembly
segment (that is, code before the #asm or after the #endasm directive).
Unless it is followed immediately by the keyword equ, the label identifies
the current code segment address. If the label is followed by equ, the label
“equates” to the value of the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code,
Z-World recommends that preprocessor macros be used instead of equs
whenever possible.

Defining Constants

Constants may be created and defined in assembly code. The keyword db
(“define byte”) places bytes at the current code segment address. The
keyword db should be followed immediately by numerical values and
strings separated by commas as shown here.

Example
Each of the following defines a string “ABC” in code space.
db \AI , \Bl , \CI
db \\ABC ”
db 0x41, 0x42, 0x43
The numerical values and characters in strings are used to initialize
sequential byte locations.

The keyword dw defines 16-bit words, least significant byte first. The
keyword dw should be followed immediately by numerical values, as
shown in this example.

Example

The following defines three constants. The first two constants are literals,
and the third constant is the address of variable xyz.

dw 0x0123, OxXFFFF, xy=z

The numerical values initialize sequential word locations, starting at the
current code segment address.

6-4 + Using Assembly Language Dynamic C 5.x

Expressions

The assembler parses most C-language constant expressions. A
C-language constant expression is one whose value is known at compile
time. All operators except the following are supported.

?: (conditional) [1 (array index,
(dot), -> (points-to)
* (dereference) sizeof ()

For example, consider the following code.

#idefine FLAG1l 1
#define FLAG2 4
#asm

and ~ (FLAG1 | FLAG2)
1d de, FLAG1+0x80
#endasm
The preprocessor expands macros before the assembler parses any text.

Special Symbols

Table 6-1 lists special symbols that can be used in an assembly language
expression.

Table 6-1. Special Assembly-Language Symbols

@sP The symbol @BP indicates the amount of stack space (in
bytes) used for stack-based variables. This does not include
arguments.

@RETVAL The symbol @RETVAL evaluatesto the offset, from the
frame reference point to the stack space reserved for
st ruct function returns.

See Embedded Assembly Code in Chapter 6, Using Assembly
&/ Language, for details on @SP.

See EC Functions Calling Assembly Code in Chapter 6,
Using Assembly Language, for details on @NETVAL.

Technical Reference Using Assembly Language ¢ 6-5

C Variables

C variable names may be used in assembly language. What a variable
name represents (the value associated with the name) depends on the
variable. For a global, static local or register local variable, the name
represents the address of the variable in root memory. For an auto
variable or formal argument, the variable name represents its own offset
from the frame reference point.

See Embedded Assembly Code in Chapter 6, Using Assembly
é%ﬁ Language, for details.

The name of a structure element represents the offset of the element from
the beginning of the structure. In the following structure, for example,
struct s {
int x;
int y;
int z;
};
the embedded assembly expression s+x evaluates to 0, s+y evaluates to 2,
and s+z evaluates to 4, regardless of where structure s may be.

In nested structures, offsets can be composite, as shown here.

struct s {

int x; // s+x = 0
struct a{ // s+a = 2
int b; // atb = 0 s+a+b 2
int c; // atc = 2 s+at+c = 4
}

};
Standalone Assembly Code

A standalone assembly function is one that is defined outside the context of
a C-language function. It can have no auto variables and no formal
parameters. Dynamic C always places a standalone assembly function in
root memory.

When a program calls a function from C, it puts the first argument into a
primary register. If the first argument has one or two bytes (int, uint,
char, pointer), the primary register is HL (with register H containing the
most significant byte). If the first argument has four bytes (long, ulong,
float), the primary register is BCDE (with register B containing the most
significant byte). Assembly-language code can use the first argument very
efficiently. Only the first argument is put into the primary register, while
all arguments—including the first—are pushed on the stack.

6-6 + Using Assembly Language Dynamic C 5.x

C function values return in the primary register, if they have four or fewer
bytes, either in HL or BCDE.

Assembly language allows assumptions to be made about arguments
passed on the stack, and “auto” variables can be defined by reserving
locations on the stack for them. However, the offsets of such implicit
arguments and variables must be kept track of. If a function expects
arguments or needs to use stack-based variables, Z-World recommends
using the embedded assembly techniques described in the next section.

Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and
local variables (either auto or static) by name. Furthermore, the
assembly code does not need to manipulate the stack because the functions
“prolog” and “epilog” already do so.

The concept and structure of a stack frame must be understood before
correct embedded assembly code can be written. A stack frame is a run-
time structure on the stack that provides the storage for all auto variables,
function arguments and the return address. Figure 6-2 shows the general
appearance of a stack frame.

Stack Frame
g higher addresses
. ~ structure return |
optional «L L space B

optional

first argument

last argument stack grows down
return address |
(2-6 bytes) -

/ IX (optional)
optional «k — saved IX register —J

<— (frame reference point)
first auto variable

optional
last auto variable
L B lower addresses
[storage for prior |
optional [contents of register |
L variables 3
[«<— SP

Figure 6-2. General Appearance of assembly Code Stack Frame

The return address is always necessary. The presence of auto variables and
register variables depends on the definition of the function. The presence
of arguments and structure return space depends on the function call. (The
stack pointer may actually point lower than the indicated mark temporarily
because of temporary information pushed on the stack.)

Technical Reference Using Assembly Language ¢ 6-7

The shaded area in the stack frame is the stack storage allocated for auto
and register variables. The assembler symbol @SP represents the size of
this area. The meaning of this symbol will become apparent later.

The following sections describe how to access local variables in various
types of functions.

No IX, Function in Root Memory

Assume this simple function has been called.

int gi; // this is a global variable
root nouseix
void func(char ch, int i, long 1){
auto int x;
static int y;
register int z;
#asm
some assembly code referencing gi, ch, i, 1, x,
vy, and z
#endasm

}

Figure 6-3 shows how the stack frame will look.

L 1(4) i
+6 [B
+4 | i (2) 7
2 ch (2) B

o[retumaddress (2) 1, (frame reference point)

P T

l«<— SP

i prior value of z (2)

Figure 6-3. Assembly Language Stack Frame
No IX, Function in Root Memory

The symbols for gi, ch, i, 1, x, y and z will have the following values
when used in the assembly code.

I offset = +6 gi a 16-hit address (in root memory)
i offset = +4 X offset = -2
ch offset=+2 v,z 16-bit addresses (in root memory)

There is a common method to access the stack-based variables 1, i, ch
and x. Consider, for example, the case of loading variable x into HL.

6-8 + Using Assembly Language Dynamic C 5.x

The following code (using the symbol @SP) is one way to do it:

1d hl,@SP+x ; hl -~ the offset from SP to the variable
add hl,sp ; hl —~ the address of the variable
1d a, (hl) ; a — the LSB of x

inc hl ; hl now points to the MSB of x
1d h, (hl) ; h —« the MSB of x
1d 1,a ; 1 ~ the LSB of x

;; at this point, hl has the value of x

For static variables (gi, y, and z), the access is much simpler because the
symbol evaluates to the address directly. The following code shows, for
example, how to load variable y into HL.

1d hl, (y) ; load hl with contents of y
Using IX, Function in Root Memory

Access to stack-based local variables is fairly inefficient. The efficiency
improves if there is a register for a frame pointer. Dynamic C can use the
register IX as a frame pointer. The function in the previous section would
then become the following.

int gi; // this is a global variable
root useix
void func(char ch, int i, long 1){
auto int x;
static int y;
register int z;
#asm
some assembly code referencing gi, ch, i, 1, x,
y, and z
#endasm

}

The keyword useix is the only change from the previous sample function.
Figure 6-4 shows the stack frame for this function.

+6

+4 [
- ch (2) B

+2
or return address (2) +

x(2) 5

(«—— (frame reference point)

i prior value of z (2)

j«— SP

Figure 6-4. Assembly Language Stack Frame
Useing IX, Function in Root Memory

Technical Reference Using Assembly Language ¢ 6-9

The arguments will have slightly different offsets because of the additional
two bytes for the saved IX register value.

| offset = +8
i offset = +6
ch offsst=+4

Now, access to stack variables becomes easier. Consider, for example,
how to load ch into register A.

1d a,(ix+ch) ; a < ch

The IX+offset load instruction takes 14 cycles and three bytes. If the
program needs to load a four-byte variable such as 1, the IX+offset
instructions are as follows.

1d e, (ix+1) ; load LSB of 1
1d d, (ix+1+1) ;
1d c, (ix+1+2) ;
1d b, (ix+1+3) ; load MSB of 1

This takes a total of 56 cycles and 12 bytes. Even if IX is the frame
reference pointer, the @SP symbol may still be used.

1d hl,@SP+1 ; hl <« the offset from SP to the variable
add hl,sp ; hl < the address of the variable
1d e, (hl) ; @ « the LSB of 1

inc hl ;
1d d, (hl) ;
inc hl ;
1d c, (hl) ;
inc hl ;

1d b, (hl) ; b < the MSB of 1

This takes 52 cycles and 11 bytes. The two approaches are competitive.
Nonetheless, the use of [X+offset is always beneficial when used to access
single- or double-byte variables.

The offset from IX is a signed 8-bit integer. To use [X+offset, the variable
must be within +127 or —128 bytes of the frame reference point. The @SP
method is the only method for variables out of this range, even if [X is
used as a frame reference pointer.

No IX, Function in Extended Memory

Functions that are (possibly) compiled to extended memory are not much
different from functions compiled to root memory.

6-10 + Using Assembly Language Dynamic C 5.x

Examine this extended memory function.

int gi; // this is a global variable
Xmem
void func(char ch, int i, long 1){

auto int x;

static int y;
register int z;
#asm xmemok
some assembly code referencing gi, ch, i, 1, x,
y, and z
#endasm

}

If the xmem keyword is present, Dynamic C compiles the function to
extended memory. Otherwise, Dynamic C can determine where to compile
the function. On the other hand, the xmemok keyword must be present if a
function is compiled to extended memory. This is because functions
compiled to extended memory have a 6-byte return address instead of a 2-
byte return address. In this example, the IX register is not used. Fig-

ure 6-5 shows the stack frame of the function.

[1 (4) -
+10 []
w8l i(2) :
+6 ch (2) B
 return address (6) |
0 _l«——— (frame reference point)

or x(2) .

i~ prior value of z (2) sp

Figure 6-5. Assembly Language Stack Frame
No IX, Function in ExtendedMemory

Because of the additional 4 bytes for the return address, the arguments will
have slightly different offsets.

I offset = +10
i offset = +8
ch offset=+6

Technical Reference Using Assembly Language ¢ 6-11

Because the compiler maintains the offsets automatically, there is no need
to worry about the change of offsets. The @SP approach discussed
previously as a means of accessing stack-based variables works whether a
function is compiled to extended memory or not, as long as the C-language
names of local variables and arguments are used.

A function compiled to extended memory can use IX as a frame reference
pointer as well. This adds an additional two bytes to argument offsets
because of the saved IX value. Again, the [X+offset approach discussed
previously.can be used because the compiler maintains the offsets auto-
matically.

C Functions Calling Assembly Code

Dynamic C does not assume that registers are preserved in function calls.
In other words, the function being called need not save and restore
registers. The exception is the memory management unit register CBR
(common base register). If a function is in root memory and the caller is in
extended memory, the compiler assumes that the CBR is preserved by the
called function.

If a C-callable assembly function is expected to return a result (of primitive
type), the function must pass the result in the “primary register.” If the
result is an int, uint, char or a pointer, return the result in HL (register
H contains the most significant byte). If the result is a long, ulong or
float, return the result in BCDE (register B contains the most significant
byte). A C function containing embedded assembly code may, of course,
use a C return statement to return a value. A standalone assembly
routine, however, must load the primary register with the return value
before the ret instruction.

In contrast, if a function returns a structure (of any size), the calling
function reserves space on the stack for the return value before pushing the
last argument (if any). A C function containing embedded assembly code
may use a C return statement to return a value. A standalone assembly
routine, however, must store the return value in the structure return space
on the stack before returning.

An inline assembly code may access the stack area reserved for structure
return values by the symbol QRETVAL, which is an offset from the frame
reference point.

The following code shows how to clear field £1 of a structure (as a
returned value) of type struct s.

6-12 + Using Assembly Language Dynamic C 5.x

typedef struct ss {

int £0; // first field
char f1; // second field
} xyz;

xyz my struct;
my struct = func();

xyz func () {
#asm

Xor a ; clear register A.
1d hl,@SP+Q@RETVAL+ss+fl ; hl <« the offset from
; SP to the fl1 field of
; the returned structure.

add hl,sp ; hl now points to fl.
1d (hl) ,a ; load a (now 0) to fl.
#endasm

}

It is crucial that @SP be added to RRETVAL because @RETVAL is an offset
from the frame reference point, not from the current SP.

Assembly Code Calling C Functions

A program may call a C function from assembly code. To make this
happen, set up part of the stack frame prior to the call and “unwind” the
stack after the call. The procedure to set up the stack frame is described
here.

1. Save all registers that the calling function wants to preserve. A called C
function may change the value of any register. (Pushing registers
values on the stack is a good way to save their values.)

2. If the function return is a struct, reserve space on the stack for the
returned structure. Most functions do not return structures.

Compute and push the last argument, if any.
Compute and push the second to last argument, if any.

Continue to push arguments, if there are more.

oS » kW

Compute and push the first argument, if any. Also load the first
argument into the primary register (HL for int, uint, char and
pointers or BCDE for long, ulong, and float) if it is of a primitive
type.

7. Issue the call instruction.

Technical Reference Using Assembly Language ¢ 6-13

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6
bytes of arguments, the program may pop data (2 bytes at time) from
the stack. Otherwise, it is more efficient to compute a new SP instead.
The following code demonstrates how to unwind arguments totaling
36 bytes of stack storage.

; note that HL is changed by this code!
; Use ex de,hl to save HL if HL has the return value

;;,ex de,hl ; save HL (if required)
1d hl1,36 ; want to pop 36 bytes
add hl,sp ; compute new SP value
1ld sp,hl ; put value back to SP
;;,ex de,hl ; restore HL (if required)

2. If the function returns struct, unload the returned structure.

3. Restore registers previously saved. Pop them off if they were stored on
the stack.

4. If the function return was not a struct, obtain the returned value from
HL or BCDE.

Indirect Function Calls in Assembly

Indirect function calls are calls made to a function through a pointer to the
function. The Z180 instruction set does not have an opcode for indirect
function calls. However, they can still be done. The following code
illustrates how.

; assume HL has the address of the called function
1ld de,retAddr ; explicitly load the return address
push de ; save the return address

jp (hl) ; indirect jump to address specified by HL
retAddr:
; execution continues here when the function returns

If HL is supposed to contain an argument, use register I'Y or IX (if IX is
not used as a frame reference pointer) instead of HL.

Interrupt Routines in Assembly

Dynamic C allows interrupt service routines to be written in C (declared

with the keyword interrupt). However, the efficiency of one interrupt
routine affects the latency of other interrupt routines. Assembly routines

can be more efficient than the equivalent C functions, and therefore more
suitable for interrupt service routines.

6-14 + Using Assembly Language Dynamic C 5.x

Either standalone assembly code or embedded assembly code may be used
for interrupt routines. The benefit of embedding assembly code in a C-
language interrupt routine is that there is no need to worry about saving
and restoring registers or reenabling interrupts. The drawback is that the C
interrupt function does save all registers, which takes some amount of
time. A standalone assembly routine needs to save and restore only the
registers it uses.

In general, an interrupt routine performs the following actions:

1.
2.

Turn off interrupts upon entry. (The Z180 does this automatically.)

Save all registers (that will be used) on the stack. Interrupt routines
written in C save all registers on the stack automatically. Standalone
assembly routines must push the registers explicitly.

. Determine the cause of the interrupt. Some devices, such as the ASCI

serial ports on the Z180, map multiple causes to the same interrupt
vector. An interrupt handler must determine what actually caused the
interrupt.

Remove the cause of the interrupt. For example, an ASCI serial port
may cause an interrupt because it has received a byte. The interrupt
routine would read the byte from the receive buffer.

If an interrupt has more than one possible cause, check for all the
causes and remove all the causes at the same time.

When finished, restore registers saved on the stack. Naturally, this
code must match the code that saved the registers. Interrupt routines
written in C perform this automatically. Standalone assembly routines
must pop the registers explicitly.

Reenable interrupts. Interrupts are disabled for the entire duration of
the interrupt routine (unless they are enabled explicitly). The interrupt
handler must reenable the interrupt so that other interrupts can get the
attention of the CPU. Interrupt routines written in C reenable interrupts
automatically when the function returns. Standalone assembly interrupt
routines, however, must reenable the interrupt (using the instruction ei)
explicitly.

The interrupts should be reenabled immediately before the return
instructions ret or reti. Ifthe interrupts are enabled earlier, the
system can stack up the interrupts. This may or may not be acceptable
because there is the potential to overflow the stack.

Return. There are three types of interrupt returns: ret, reti and
retn.

&

Refer to Chapter 8, Interrupts, and to the Zilog Z180 MPU
User’s Manual to learn about their differences.

Technical Reference Using Assembly Language ¢ 6-15

Common Problems

Unbalanced stack. Ensure the stack is “balanced” when a routine returns.
In other words, the SP must be same on exit as it was on entry. From the
caller’s point of view, the SP register must be identical before and after the
call instruction.

Using the @sp approach after pushing temporary information on the
stack. The @sP approach for inline assembly code assumes that SP points
to the low boundary of the stack frame. This might not be the case if the
routine pushes temporary information onto the stack. The space taken by
temporary information on the stack must be compensated for.

The following code illustrates the concept.

;SP still points to the low boundary of the call frame
push hl ; save HL
;SP now two bytes below the stack frame!

1d hl,@SP+x+2 ; Add 2 to compensate for altered SP

add hl,sp ; compute as normal
1d a, (hl) ; get the content
pop hl ; restore HL

;SP again points to the low boundary of the call frame

CBR not preserved. Dynamic C assumes that root functions preserve the
CBR (common base register, for memory management). While most
functions have nothing to do with the CBR, some functions in extended
memory do manipulate the CBR. Make sure the CBR is preserved in a
function in root memory.

Registers not preserved. In Dynamic C, the caller is responsible for
saving and restoring all registers. An assembly routine that calls a C
function must assume that all registers will be changed.

Unpreserved registers in interrupt routines cause unpredictable and
unrepeatable problems. In contrast to normal functions, interrupt functions
are responsible for saving and restoring all registers themselves.

6-16 + Using Assembly Language Dynamic C 5.x

COSTATEMENTS

Technical Reference Costatements ¢+ 7-1

Dynamic C supports multi-threaded real-time programming. Either the
real-time kernel (RTK. LIB) or the simplified real-time kernel (SRTK . LIB)
may be used. Costatements arc another option. Costatements offer
cooperative multi-tasking within an application.

There are several advantages to costatements.
» Costatements are a feature built into Dynamic C.
» Costatements are cooperative instead of preemptive.
» Costatements can operate without multiple stacks.

Using costatements effectively requires a knowledge of their syntax, their
supporting data structures, and the mechanisms by which they may be put
to use.

Overview

Costatements are blocks of code that can suspend their own execution at
various times for various reasons, allowing other costatements or other
program code to execute. Costatements operate concurrently. For
example, the code shown in Figure 7-1 will operate as shown in the
diagram.

main () { main
int x, y, z;

i.féé(;;){ v v {

costate a { a b c

}
costate b {

}

costate c {

}

Figure 7-1. Overview of Costatements

Blocks a, b, and ¢ (each of them costatements) will operate independently,
concurrently, and with their own timing. The keyword costate identifies
a costatement.

Using costatements presupposes that there will be more than one costate-
ment. It is only when there is more than one task that costatements can be
considered cooperative, because it is only when there is more than one task
that any task can execute in the idle time of another task.

7-2 + Costatements Dynamic C 5.x

Nevertheless, some single tasks are easier to write using costatements.
Costatements can be used, for example, to create delays.

A typical set of costatements will execute in an endless loop. However,
this is not a requirement.

Costatements are cooperative concurrent tasks because they can suspend
their own operation. There are three ways they do this.

1. They can wait for an event, a condition, or the passage of a certain
amount of time. The waitfor statement is used. Special functions are
available to cover the passage of time: DelaySec, DelayMs,
DelayTicks, IntervalSec, and IntervalMs.

2. They can use a yield statement to yield temporarily to other costate-
ments.

3. They can use an abort statement to cancel their own operation.

Since costatements can suspend their own execution, they can also resume
their own execution from the point at which they suspended their opera-
tion. In general, each costatement—in a set of costatements—is in a state
of partial completion. Some are suspended; some are executing. With the
passage of time, other costatements suspend and others resume. Placing
the costatements in a loop is the simplest way to give each costatement a
chance to progress in its turn.

Costatements can be active (ON) or inactive (OFF). A costatement may be
declared to be “always on,” “initially on,” or “initially off. A costatement
that is initially on will execute once and then become inactive. A
costatement that is initially off will not execute until it is started by some
other part of the program. Then it will execute once and become inactive
again.

For each costatement, there is a structure of type CoData that supports its
operation. For example, the CoData structure maintains a position pointer
that tells the costatement where to resume execution when it has been
suspended.

Costatements may be named or unnamed. An unnamed costatement is

“always on.” The name of a named costatement can be one of the follow-

ing.

* Avalid C name not previously used. This results in the creation of a
structure of type CoData of the same name.

* The name of a local or global CoData structure that has already been
defined.

* A pointer to an existing structure of type CoData.

Technical Reference Costatements ¢+ 7-3

A CoData structure may be declared independently of a costatement.
Thus, many costatements can use a single CoData structure (one at a
time). A single costatement may point to different CoData structures at
different times.

All costatements in a program, except those that use pointers as their
names, are initialized whenever the function chain GLOBAL INIT is
called.

The functions VdInit and uple_init also call
4" _GLOBAL_INIT. Refer to the Virtual Driver in the Dynamic
C Function Reference manual for more information.

Four functions, CoBegin, CoResume, CoPause, and CoReset are
available to operate costatements remotely. Two functions, isCoDone and
isCoRunning, return the state of a costatement.

A firsttime keyword is available to help create waitfor functions.

Syntax

The general format of a costatement appears below.

costate [name [state] 1 {
[statement | yield; | abort;
| waitfor(expression); 1]

}

A costatement can have as many statements, including abort statements,
yield statements, and waitfors as needed.

Name
The term name, which is optional, can be any of the following.

* Avalid C name not previously used. This results in the creation of a
structure of type CoData of the same name.

* The name of a local or global CoData structure that has already been
defined.

* A pointer to an existing structure of type CoData.

If name is missing, then the compiler creates an “unnamed” structure of
type CoData for the costatement.

7-4 + Costatements Dynamic C 5.x

State
The term state can be one of the following.

* always_on. The costatement is always active. (Unnamed costate-
ments are always on.)

* init on. The costatement is initially on and will automatically
execute the first time it is encountered in the execution thread. The
costatement becomes inactive after it completes (or aborts).

If state is absent, the costatement is initially off. For the costatement to
execute, it must be triggered by the software. Then the costatement will
execute once and become inactive again.

Waitfor

Costatements can wait for an event, a condition, or the passage of a certain
amount of time. The wait£for statement, permitted only inside a costate-
ment, is available for this purpose.

waitfor (expression);

The waitfor suspends progress of the costatement, pending some
condition indicated by the expression.

When a program reaches the waitfor, if expression evaluates false (that
is, zero), the reentry point for the costatement is set at the waitfor
statement and the program jumps out of the costatement. Then, each time
the program reenters the costatement, it evalutes the waitfor expression.
If the expression is false, the program jumps out again. If the expression is
true (non-zero), the program will continue with the statement following the
waitfor.

The diagram on the left side of Figure 7-2 shows the execution thread the
first time through a costatement when a waitfor evaluates false. The
diagram on the right shows the execution thread through a costatement
when a waitfor continues to evaluate false.

¢ e

Statement
Statement

Statement
Statement

costate ...

waitfor(...

.
7

—~

! costate ...

statement
statement

statement
statement

S~ > waitfor(...

—

i g

(b) Subsequent Times

v -

(a) First Time
Figure 7-2. Execution of waitfor Statement

Technical Reference Costatements ¢+ 7-5

When the waitfor is encountered in a costatement for the first time, a
first time flag associated with that the costatement is set. This flag is used
by routines perform timing delays.

Figure 7-3 diagram shows the execution thread through a costatement
when a waitfor finally evaluates true.

//‘_5\\l
s

/ costate ... {
statement
Statement

N~ > waitfor(...);

Statement
statement

—

Figure 7-3. Execution of True waitfor Statement

Delay Functions

Three special functions (others may be created) allow the use of delays in
the expression evaluated by a waitfor.
int DelaySec(ulong seconds);

int DelayMs(ulong milliseconds) ;
int DelayTicks(uint ticks);

int IntervalSec(ulong seconds) ;
int IntervalMs(ulong milliseconds) ;

Thus, an expression such as the following may be used.

// wait for 30 minutes
waitfor (DelaySec (30L*60L)),

// wait for device or 40 milliseconds
waitfor (DelayMs (40L) || device-ready())

/ The virtual driver must be initialized with a call to vdInit
before these delay functions can be used.

Refer to the Dynamic C Function Reference manual and
& the Dynamic C Application Frameworks manual for more
details about the virtual driver and the delay functions.

7-6 + Costatements Dynamic C 5.x

Yield

A costatement can yield to other costatements. The yield statement is
permitted only inside a costatement.

yield;
The yield makes an unconditional exit from a costatement, as shown in
Figure 7-4.

costate ... {
statement
statement

yield; -~ N

statement \
statement |

i"\\\\ 7

Figure 7-4. Unconditional Yield Exit from Costatement

The next time the program executes the costatement, it will resume at the
statement following the yield, as shown in Figure 7-5. Compare this
action with the description of the abort statement in the next section.

T l
.

costate ... {
| statement
\ Statement

yield;
—» statement
statement

}
\

i

Figure 7-5. Resumption of Program after Yield

Technical Reference Costatements ¢+ 7-7

Example
Here is a loop containing two costatements.

while (1) {
costate(
for(i = 0; i < 30000; i++){
some program code
yield;
}
}
costate{
waitfor (DelayMs (500)) ;
printf (“i = %d\n”,i);
}
}

Exactly one iteration of the for loop gets executed on each pass through
the endless while loop. The second costatement checks whether 500 mil-
liseconds have passed since the program first entered it. It will print the
value of i if 500 milliseconds have passed.

The result is a loop that does two things concurrently. The code will
output the value of i every half second, and the for loop increments i
(and might do other things). The process will go on forever since both
costatements are in an endless loop.

Abort

A costatement can terminate itself. For this purpose, there is the abort
statement, which is permitted only inside a costatement.

abort;

The abort statement, in effect, causes execution to jump to the very end
of the costatement, where it exits. The costatement will then terminate. If
the costatement is always on, it will restart from the top the next time the
program reaches it. If the costatement is not always on, it becomes
inactive since the costatement terminates, and will not execute again until
turned on by some other software. (Unnamed costatements are always on.)

Figure 7-6 illustartes the executuion of the abort statement.

7-8 + Costatements Dynamic C 5.x

v

v

costate ... {
statement
Statement

abort; -~

statement
statement

costate ...

Statement
Statement

abort;
Sstatement
statement

i‘\\\ _

(a) At Time of Abort
Figure 7-6. Execution of Abort Statement

The CoData Structure

’

(b) Next Time

Each costatement is associated with a structure of type CoData. For this
discussion, assume that each costatement corresponds to a static CoData

structure.

/ Use the functions provided to operate costatements. Do
not use the fields of a CoData structure directly.

The structure Cobata follows.

typedef struct {

char CSState;

uint lastlocADDR;
char lastlocCBR;

char ChkSum;

char firsttime;

union{
ulong ul;
struct {
uint ul;
uint u2;
} us;
} content;

char ChkSum2;

} CoData;

Technical Reference

Costatements ¢+ 7-9

CSState

The csstate field contains two flags, STOPPED and INIT. The functions
CoBegin, CoReset, CoPause and CoResume set these two flags. The
functions isCoDone and isCoRunning report these flags, as ind icated in
Table 7-1.

Table 7-1. Meanings of STOPPED and | NI T Flags

STOPPED | INI'T Meaning

Yes Yes The costatement either is “done,” or has been
initialized to run from the beginning, but set to
inactive. This condition can be set@yReset .

Yes No The costatement is paused, waiting to resume gxe-
cution from wherever it was paused. This
condition can be set l§oPause.

No Yes The costatement has been initialized to run fronj
the beginning, and will run when your program l
execution reaches it. This condition can be set lpy
CoBegi n.

No No The costatement is active and running and will

resume execution where it left off when the
program execution reaches it. This is the norma
condition of a running costatemer@Resune
will return the flags to this state.

The function isCoDone returns true (1) if both the STOPPED and INIT
flags are set.

The function isCoRunning returns true (1) if the STOPPED flag is not
set.

The csstate field applies only if the costatement has a name. The
csstate flag has no meaning for unnamed costatements.

Last Location

The two fields lastlocADDR and lastlocCBR represent the 24-bit
address of the location at which to resume execution of the costatement. If
lastlocADDR is zero (as it is when initialized), the costatement executes
from the beginning, subject to the CSState flags. If lastlocADDR is
non-zero, the costatement resumes at the 24-bit address represented by
lastlocADDR and lastlocCBR.

These fields are zeroed when (1) the CoData structure is initialized by a
call to GLOBAL INIT, CoBegin or CoReset, (2) the costatement is
executed to completion or (3) the costatement is aborted.

7-10 + Costatements Dynamic C 5.x

Check Sum

The chkSum field is a one-byte checksum of the address. (It is the
exclusive-or result of the bytes in lastlocADDR and lastlocCBR.) If
ChkSum is not consistent with the address, the program will generate a run-
time error and reset. The checksum is maintained automatically. It is
initialized by _GLOBAL INIT, CoBegin and CoReset.

First Time

The firsttime field is is a flag that is used by waitfor statements. It is
set to 1 before the waitfor expression is evaluated the first time. This
aids in calculating elapsed time for the functions DelayMs, DelaySec,
and DelayTicks.

Content

The content field (a union) is used by the costatement delay routines to
store a delay count.

Check Sum 2
The chksum2 field is currently unused.

The Firsttime Flag and Firsttime Functions

A firsttime function is a delay function that can be called from a
waitfor statement. For example, the first time the DelayMs function is
called, it must set up the countdown variables for the specified amount of
delay (stored in the ficld content of a CoData structure. All subsequent
calls to DelayMs merely check whether the delay has expired. The
initialization flag must be associated with the CoData structure because
several costatements may call DelayMs.

A firsttime function is declared with the keyword firsttime. A
proper £irsttime function definition would look like the following.

firsttime int MyDelay(CoData *ptr, delay
params...){
some code

}

The first argument of a £irsttime function must always be a pointer to a
CoData structure. A firsttime function will use this pointer to check
whether the costatement’s firsttime field is 1. If so, the function will
set up variables required to count the delay. The firsttime function
should also set the firsttime flag to 0 so subsequent visits to waitfor
do not reset the delay counter.

Technical Reference Costatements ¢ 7-11

Calling a First Time Function

From within a costatement, use a firsttime function as an argument to a
waitfor statement.

costate(
waitfor (MyDelay(1000))

}

Note that the call to MyDelay above has only one parameter. The CoData
pointer, required in the function definition, is not to be included in the call.
The compiler automatically passes the address of the CoData structure as
the first argument if a firsttime function is called from within a costate-
ment.

Advanced CoData Usage

Up to this point, the discussion has assumed that CoData structures are
static and that there is one for each costatement.

A costatement is like a script. It specifies the sequence of operations to
perform. The CoData data structure, on the other hand, is like an actor. It
is responsible for “acting out” the script. With a static CoData structure
for each costatement, there one “actor” for each “script.”

However, there are instances where multiple “actors” are needed for the
same “script”. For example, if a factory has » identical machines, and
there is a costatement to control the machines, a program with static
CoData will look like the following program.

for(; ;) {
costate{
control sequence for machine 1
}
costate(
control sequence for machine 2

}
costate(
control sequence for machine n

}

7-12 + Costatements Dynamic C 5.x

Although it is extremely simple, the above code is wasteful. A second
approach is given below.

CoData Machine[n]; // an array of codata blocks
CoData ThisMachine; // one of the machines

int i;

for(i=0; i<n; i++){ // for all machines,
CoBegin(&Machine[i]); // enable machine

}

for(;;){ // endless loop

for(i=0; i<n; i++){
ThisMachine = Machine[i]; // get machine info
costate ThisMachine always-on({

Control sequence. Applies to any machine

}
Machine[i]=ThisMachine; // store it back

This program is more space efficient than the one before it. It uses the
same costatement for all the machines. However, the CoData structure
must be copied from, and back to, the array because the Machine array is
the actual storage for the states of each individual machine.

The following example offers another way to implement the same pro-
gram.

CoData Machine[n]; // an array of codata blocks
CoData *pMachine; // ptr to a machine
uint i;
for(i=0; i<n; i++){ // for all machines,
CoBegin (&Machine[i]); // enable machine
}
for(;;){
for(i=0; i < n; i++){
pMachine=&Machine[i] ;
costate pMachine always-on {
control sequence for all machines
}
}
}

Technical Reference Costatements ¢ 7-13

In this approach, pMachine is a poinfer to a CoData structure. Using

pointers, there is no need to copy CoData structures before and after the
costatement.

For further information, refer to the Dynamic C Application
&
Frameworks manual.

It is never acceptable to have more than one costatement
sharing a CoData (unless there is a guarantee they will not

/ use the CoData at the same time, as in the second example
above). The fields in CoData can control only one
costatement at a time.

7-14 + Costatements Dynamic C 5.x

INTERRUPTS

Technical Reference Interrupts ¢ 8-1

Dynamic C provides facilities for writing interrupt service routines (ISRs)
in C and for setting up ISRs at compile time. Interrupt service routines
may be written in assembly language.

& See Chapter 6, Using Assembly Language.

A function that services interrupts must save and restore registers (includ-
ing the memory management unit’s CBR register). The keyword
interrupt applies to a C function that services interrupts. All
C-language ISRs save and restore registers.

Three additional keywords—ret, reti, or retn—can be used to select
the return-from-interrupt instruction that will be performed. The following
example shows an interrupt service routine in skeletal form.

interrupt reti iservice() {

EI(); // reenable interrupts (optional)
body of code...
return; // optional at end of code

}

When the above return is executed, the final two machine-level instruc-
tions after the registers have been restored are as follows.

ei ; enable interrupts
reti ; return from interrupt

If the ret keyword were to be used, then the final two instructions would
be as follows.

ei ; enable interrupts
ret ; return from interrupt

If the retn keyword were to be used, the final instruction would be as
follows.

retn ; return from interrupt

No ei is necessary for retn since this instruction restores the previous
state of the interrupts. If none of the keywords for the type of return is
given, the default ret is assumed.

Dynamic C uses the reti instruction to return from an interrupt created by
a Z180 peripheral. The reti instruction creates a particular type of bus
cycle that the Z180 peripheral recognizes as acknowledging the comple-
tion of the interrupt service routine. The ret type of return can be used
for interrupts created by devices not in the Z180 scheme, although it would
not hurt to use reti. The only consideration would be the possibility of
affecting devices in the Z180 family that might be part of the system, that
is, accidentally sending the interrupt acknowledge signal to them before
servicing the device’s interrupt.

8-2 ¢ Interrupts Dynamic C 5.x

The retn instruction is used to return from a nonmaskable interrupt and it
restores the interrupt state to the state prior to the nonmaskable interrupt.

More information on the Z180 interrupts can be found in the
&
Zilog manuals.

If an interrupt routine is short, or cannot be interrupted, then interrupts can
be left disabled throughout its execution. However, to keep interrupt
latency (the amount of time that another interrupt request must wait before
service) at a minimum, avoid disabling interrupts for long periods.

In addition, communication with the Dynamic C host system will be
disrupted if interrupts are off for long periods, although the communication
link can tolerate interrupts being off for approximately 0.5 seconds.

Two functions enable and disable interrupts.

void EI(); // enable interrupts
void DI():; // disable interrupts

The following function returns 1 if interrupts are enabled and 0 otherwise.
int iff();
The following functions read and set the 8-bit Z180 I register.

uint readireg() ;
void setireg(int value);

Normally, the I register points to a 256-byte vector table defined by the
debugger startup code. If the location of the table changes, copy the
interrupt vectors used by the debugger to the new area before modifying
the I register.

Interrrupt Vectors

There are two types of Z180 interrupt vectors. The first type, which
handles modes 0, 1 and non-maskable interrupts, requires that a jump
instruction be inserted at the vector location because control is actually
transferred to that location. This type includes the following vectors.

08h: jp restart_service ; mode 0 int
38h: jp interrupt0O_service ; mode 1 int
66h: jp nmi_service ; non-maskable

Use the following preprocessor directives to set the vectors at 38, and 66,,.

#JUMP_VEC RST38 VEC function_name
#JUMP_VEC NMI_VEC function_name

The term RST38_VEC refers to the interrupt at 38, and NMI_VEC refers to
the interrupt at 66,,. Note that jump instructions are not usually stored at
these locations because these locations are usually in the library EPROM

Technical Reference Interrupts ¢ 8-3

area and cannot be changed. Instead, these locations jump to a relay
vector in RAM which is actually modified.

The second type handles the Mode 2 interrupt used by Z180 peripheral
devices, Z180 internal I/O devices and Dynamic C. This involves a 256-
byte table, identified by the I register, that can contain addresses of up to
128 interrupt service routines.

Use the following preprocessor directive to set interrupt vectors in the
page specified by the I register.

#INT VEC (const_expression) function-name

The constant expression is the offset, in bytes, of the interrupt vector,
which is always an even number from 0 to 126. The function name is the
name of the interrupt service routine.

The vector table can be set with assignment expressions
during Dynamic C development, but these assignments will

/ not work when the code is in flash or burned into ROM.
Always use the preprocessor directive, which is executed at
compile time.

#INT_VEC expressions are processed as they are encountered during
compilation. If a program specifies more than one location for a vector,
the last one will be used. This can happen accidentally if, for example, an
ISR is written for a device and then a library function that includes its own
ISR for the same device is invoked. The library ISR will be used and the
written ISR will be ignored, a situation that can be confusing.

Example

The following program illustrates the use of interrupt service routines
written in Dynamic C.

int PRT1-init(int tc); // initialize PRT1
#define TDE1l 1 // PRT chl down-count enable
#define TIEl 5 // PRT chl interrupt enable

shared long counter; // shared between different
// interrupt levels
#define ticks 2304 // (9.216MHz / 20) * .005 sec

main () {
counter = 0OL; // initialize counter
PRT1 init(ticks); // 5 ms interrupts
for(;;){

if (counter >= 5000) break;
outport(ENB485, ! (counter & 64));

}

IRES(TCR, TDEl); // disable count down
IRES(TCR, TIEl); // disable interrupts
printf(“Counter has reached 5000.\n”);

}
8-4 ¢ Interrupts Dynamic C 5.x

// this interrupt routine increments the “counter”
#INT VEC PRT1 VEC ccc
interrupt reti ccc() {

inport(TCR) ;

inport(TMDRIL) ; // clear TIF
EI();
counter = counter + 1;

}

int PRT1 _init(int tc){
IRES(TCR, TDEl); // disable count down
IRES(TCR, TIEl); // disable interrupts
outport(TMDR1L, tc),
outport(TMDR1H, tc >> 8); // set data reg
outport(RLDR1H, tc >> 8); // set reload counter
outport(RLDR1L, tc); // set reload counter
ISET(TCR, TDEl); // enable count down
ISET(TCR, TIEl); // enable interrupts
EI();

}

The interrupt routine cce increments a counter every 5 milliseconds. The
program prints a message and stops as soon as the counter reaches 5000.

Technical Reference Interrupts ¢+ 8-5

8-6 ¢ Interrupts Dynamic C 5.x

9

Revote DownLOAD

Technical Reference Remote Download ¢ 9-1

Z-World provides field programmability for its controllers. A
downloadable program file can be created by selecting the appropriate
compiler option. The Z-World Download Manager (DLM), resident in a
controller, will receive the program, place it in memory, and start it
running. Remote downloading requires a communications program such
as ProComm that has an XMODEM transfer protocol available.

The downloaded program (DLP) and the DLM exist simultaneously as
separate programs on the remote controller. They occupy different
portions of memory. It is necessary for Dynamic C to know certain
memory-mapping parameters about the DLM before it compiles the
downloadable file.

Figure 9-1 shows how the DLM and DLP are arranged in memory. The
download program can occupy both root and extended memory.

Target Root Memory
BIOS-defined DLP : downloaded program
data top
DLM data DLM : Download Manager
(DLM stack) DLM stack can overlap DLP data
DLM root
OLP data data bottom Target Extended Memory
| DLM data
,,,,,,,, DLM xmem
(DLP stack) data bottom
stacl
A Aligned at 256-byte //\/\/
DLP code boundaries #
DLM root DLP code
DLM code code top DLM xmem
777777 0x2000 code top
BIOS DLM code
0x0000

Figure 9-1. Arrangement of DLM and DLP in Memory

The DLM may run in RAM, EPROM, or flash. The file may be down-
loaded to flash or RAM.

The Z-World DLM uses memory-mapping information contained in the
DLP to place the DLP machine code in the correct locations in target
memory. The DLM does not download uninitialized data for the DLP.
Initialized data reside in code space.

9-2 + Remote Downlaod Dynamic C 5.x

The Download Manager

The DLM is found in source code, for example, DLMO1 . C in the
SAMPLES\AASC subdirectory. The DLM may be modified in any way.

Once the DLM is installed on the target (compile it to flash or burn an
EPROM), connect the target to the PC’s serial port. A modem connection
is acceptable. Start the communication program. Then, issue a break
request (ALT-B in ProComm). The break request will cause the DLM to
restart.

The Download Manager displays the following menu continuously:
Download Manager Menu
1) Enter Password
2) Set Password
3) Report DLM Parameters
4) Download Program
5) Execute Downloaded Program
6) Hang-up Remote Modem
Enter Choice #:

Enter Password
Choose Enter Password before enabling choices 2, 3 or 4.
Set Password

Choose Set Password (press 2) to change the password. The DLM will
prompt for a new password twice for verification. The DLM must allow
password changes. See below.

Report DLM Parameters

This menu choice causes the DLM to report some memory-mapping
parameters auch as the following.

DIM Root Code Top 00:7579
DLM Root Data Bottom E7:A7E5
DIM Xmem Code Top 0000D000

DLM Xmem Data Bottom 0008C000

Dynamic C requires these parameters to compile a downloadable program
correctly. Dynamic C prompts for these values when a program is compil-
ing to a DLP file. Actual values will differ.

Technical Reference Remote Download ¢ 9-3

Download Program

This menu choice initiates an XMODEM download on the target side. The
upload must then be initiated on the PC side, using the communication
program’s XMODEM communication facilities. The file must be a
downloadable program file created with Dynamic C. The DLM verifies
the correctness of all data transmitted.

Execute Downloaded Program

This menu choice causes the DLM to shut down the interrupts it uses (but
not the serial interrupt used for serial communication because that interrupt
vector is shared by the DLP) and jump to the startup code of the DLP, from
which it will not return. The DLM stores the CRC check sum for each
segment and the number, size, and locations of downloaded segments. The
DLM verifies the check sum for each segment before the DLP is invoked.
The DLP will not run unless all CRCs (generally 3 or 4) are correct.

When the DLM is invoked again with another break request, it will start up
at 0x2200, regardless of what else is running.

Hangup Remote Modem

This menu choice causes the DLM to issue standard modem hang-up and
reset commands, and then jump to the DLP.

The DLM Code

Password security and timeout periods for the DLM can be controlled
during compilation by changing the following macro definitions at the
beginning of the DLM source code.

DLM_PASSWORD_STR defines the default password. If set to the null string
(“”) then just press ENTER after choosing Enter Password to gain
entry.

DLM_PASSWORD_LVL Setting the password level to 0 enables the
Set Password.command to change the password at runtime.
DIM MIN PW_LEN Sets the minimum length of a valid password

DIM MAX PW_LEN Sets the maximum length of a valid password. THe
password mus be betwen the minimum and the maximum values. The
program will prompt for a new password twice for verification.

PSW_TIMEOUT Sets the number of milliseconds the DLM should wait for
a password before jumping back to the DLP (if one is present).

DLM_TIMEOUT Sets the general timeout period for serial communications.
If a serial communication function times out, the DLM returns control
to the DLP (if one is present).

9-4 + Remote Downlaod Dynamic C 5.x

HANGUP_TIMEOUT Specifies the timeout period the DLM will allow for
successful hangup of the modem when transferring control to the DLP.
If the hangup operation is unsuccessful, the DLM still transfers
machine control to the DLP.

The Downloaded Program (DLP)

To create a downloadable program, select .DLP for download in the
Compiler Options dialog under the OPTIONS menu. Then issue the
Compile to File command. Dynamic C will present the Download
Manager Parameters dialog shown below.

Dhoveymiitian] Manager Paramelsrs

Rool Dala Balos ETATES A To Flas

Kt Conde Top ||u|-:||:-uu 1

Mrrasn [win BloHom |lIIIIﬂI Alw

 Load trom DLC ls |
| Al sddrosses i b

Fill in the fields in this dialog to match those reported by the DLM when
the DLM parameters (menu choice 3, described previously) were re-
quested. The fields will be all zeros the first time the DLP is compiled.
Thereafter, the field values will be appear with the last values used.

Buttons in the dialog box allow the download parameters to be saved or
retrieved to/from a download configuration (DLC) file. This is convenient
to create DLPs for more than one type of controller. Be careful not to
compile a DLP for a configuration different from the one on which it will
actually run.

How to Use the DLM

Here is a step-by-step example of how to use the DLM to download and
run a program. This example also demonstrates the use of an .RTI file for
targetless compilation.

1. With a target controller connected to a PC, start Dynamic C, and open
the file DIMO1 . C in the SAMPLES\AASC subdirectory. Set
DLM PASSWORD STR to the desired password, or to “” for no pass-
word.

2. Issue the Create *.RTI File Targetless Compile command to create an
.RT1I file for later use.

3. Compile DIMO1.C to the target.

Technical Reference Remote Download ¢ 9-5

© N w»

Reset the target. Start the communication program. Enter the pass-
word when the Download Manager Menu appears.

Press 3 to display the DLM memory map. Jot down the numbers.
With Dynamic C open, open the program that is to be downloaded.
Select the .DLP for download compiler option.

Issue the Compile to File with *.RTI File command. Dynamic C will
prompt for the name of the .RTI file to use. After that, the Download
Manager Parameters dialog box will appear. Enter exactly the
numbers from the DLM display in the corresponding fields on the
dialog box. Click the OK button.

Assuming successful compilation, a download file will be created
having the same name as the source file with a . DLP extension.

Press 4 in the DLM menu to initiate the download. Then initiate an
XMODEM upload in the communication program. (Use the Page Up and
X keys in ProComm.)

10. When the transfer is complete, the DLP is ready to run. Press 5 in the

DLM menu to run it.

11. To terminate the DLP and return to the DLM, issue a break request in

the communication program (ALT-B in ProComm). The Download
Manager menu will reappear.

The DLP File Format
The DLP file created by Dynamic C has the following format.

1.

A 128-byte header

Offset Contents Type
0 DLP Root Code Bottom ul ong
DLP Root Code Top ul ong
8 DLP Xmem Code Bottom ul ong
12 DLP Xmem Code Top ul ong
16 DLP Root Data Bottom ul ong
20 DLP Root Data Top ul ong
24 DLP Xmem Data Bottom ul ong
28 DLP Xmem Data Top ul ong
32 NUMSEG ui nt
34-125 Reserved —
126 CRC for this header ui nt

9-6 * Remote Downlaod Dynamic C 5.x

2. Following the header, there are NUMSEG segments consisting of the
following entries.

Offset Contents Type
0 Physical address for the segment body ul ong
4 SEGLEN (length of segment body) ul ong
8 The segment body —
(SEGLEN+8) CRC for segment and first 8 bytes ui nt

Technical Reference Remote Download ¢ 9-7

9-8 + Remote Downlaod Dynamic C 5.x

A

APPENDIX A:
Run-Tive ERROR PROCESSING

Technical Reference Run-Time Error Processing ¢ A-1

Compiled code generated by Dynamic C calls an error-handling routine for
abnormal situations. The error handler supplied with Dynamic C prints
any error messages to the STDIO window. When software runs standalone
(disconnected from Dynamic C), such an error message will hang while
waiting for a response from the PC being used to development the program
or program the controller. Be sure to provide for an error handler unless
there is a certainty that there will never be any run-time errors.

Your program calls the error handler indirectly through the global function
pointer ERROR_EXIT. The following example shows the use of the
standard error handler.
main () {
e // ERROR EXIT is a pointer
(*ERROR_EXIT) (50,0); // to the standard handler
} // or to your own

In this example, the standard Dynamic C error handler would send the
message “Run Time Error 50 to the STDIO window. The first argument
is the error number. The second argument specifies the address at which
the error occurred.

The following example illustrates the use of a custom error-handling
function that can take the place of the standard error handler:

void my handler(uint code, uint address){

error processing code...

}
main () {
ééﬁOR_EXIT = my handler; // substitute my handler
some statements...
(*ERROR_EXIT) (code, addr); // call my own handler
some statements...
}

A built-in Dynamic C symbol-—ROM—is set to 1 if the compilation is to
an EPROM file. Use this variable to conditionally install a custom error
handler such as the one below.

#if ROM

ERROR _EXIT = user_error_ handler;
#endif

A-2 + Run-Time Error Processing Dynamic C 5.x

Table A-1 lists the ranges of Dynamic C error codes.

Table A-1. Ranges of Dyanmic C Error Codes

Code Meaning
0-99 User, nonfatal. For example, 49 = overflow frmow10.
100 - 127 System, nonfatal
128 — 227 User, fatal, no return possible
228 — 255 System, fatal, no return possible

Table A-2 lists the fatal errors generated by Dynamic C.

Table A-2. Dyanmic C Fatal Errors

Code Meaning
228 Pointer store out of bounds
229 Array index out of bounds
230 Stack corrupted
231 Stack overflow
232 Aux stack overflow
233 not used
234 Domain error (e.g., acos(2))
235 Range error (e.g.,t an(pi/ 2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 Subtraction overflow
240 Integer divide by zero
241 Unexpected interrupt
242 Execute outside program bounds (RST 38)

The standard error routine reports only fatal errors.

Technical Reference Run-Time Error Processing ¢ A-3

Long Jumps

Error recovery is performed using Dynamic C’s setjmp and longjmp
functions. If an error is detected anywhere in a program, a “long jump”
can be made to a safe location so that the necessary recovery tasks can be
performed. Typically a jump is made from a deeply nested function back
to the main program.

The setjmp function marks a place in the code and saves the stack pointer
and important registers. The longjmp function causes a return to the
place marked by the setjmp call. The processor stack is immediately
“unwound” and a known state is restored. This exampe shows how to do
this.

// probably in main ()

jmp_buf savreg; // you must make a save buffer

1f(setjmp (savreqg)) {

code to recover from the error

// then, somewhere, deeper in your code...
if(big error) longjmp (savregqg,l);

When longjmp is executed, the execution resumes immediately after the
call to setjmp, and the value returned by the call to setjmp is the same as
the second argument passed to longjmp. This value can be the error code
as long as it is non-zero. (The return value of setjmp is 0 when it is
called directly.)

Call 1ongjmp in the same function as the call to setjmp or in a function
called directly or indirectly from that function. (The main function is
always a safe place to put setjmp.)

A “long jump” restores the SP, IX, and PC registers and also restores the
auxiliary stack pointer.

Watchdog Timer

Most Z-World controllers have a watchdog timer. The watchdog timer is
used to ensure that software does not get stuck. Even error-free software is
susceptible to transient problems such as power surges, power outages, and
dropped bits.

A watchdog timer will reset the system after a certain period (typically
about 1.6 seconds) if the software does not reset the watchdog timer within
that period. This safety feature helps to ensure that the program continues
to function.

A-4 + Run-Time Error Processing Dynamic C 5.x

The function call
hitwd() ;

resets the watchdog timer. A program must call hitwd at least at the

frequency of the watchdog timer (about once per second) no matter what
else it is doing.

Although the watchdog timer can be disabled on some, but
/ not all, Z-World controllers, Z-World does not recommend
disabling the watchdog timer.

Protected Variables

A program may need to recover protected variables at when it restarts.
However, if the program has never run before, it must initialize the
protected variables.

The function _prot_recover recovers protected variables; the function
_prot_init initializes them. The function _sysIsSuperReset calls the
appropriate protected variable function.

& See Appendix G, Reset Functions, for more information.

Technical Reference Run-Time Error Processing ¢ A-5

A-6 ¢+ Run-Time Error Processing Dynamic C 5.x

B

Arrenpix B: EEFFICIENCY

Technical Reference Efficiency ¢ B-1

There are a number of methods that can be used to reduce the size of a
program, or to increase its speed.

Nodebug Keyword

Dynamic C places an RST 28H instruction in debug code at the beginning
of each C statement to provide locations for break points. These “jumps”
to the debugger consume one byte and about 25 clocks of execution time
for each statement. A function will not have RST 28H instructions if the
nodebug keyword is used in the function declaration.

nodebug int myfunc(int x, int z){

}

Once a function is nodebug, it is no longer possible to single-step into the
function or set a break point in the function, except when the assembly
window is active. (It is possible to single-step through any assembly
code.) The nodebug keyword also reduces entry and exit bookkeeping for
the function and turns off all checking for array bounds, stack corruption
and pointer stores.

If the nodebug option is used for the main function, the program will
begin to execute as soon as it finishes compiling (as long as the program is
not compiling to a file).

Use the nodebug keyword with the #asm directive.

2 We See Chapter 5, Using Assembly Language, for more informa-
tion.

Use the directive #nodebug anywhere within the program to enable
nodebug for all statements following the directive. The #debug directive
has the opposite effect.

Static Variables

Static variables are much more efficient on the Z180 than auto vari-
ables. In Dynamic C, the default local storage class is static, while most
C compilers use auto. Use auto variables in reentrant or recursive
functions.

Here are some rules concerning declarations that will help to conserve
code and save time.

1. Use global variables for global communication or constants.

B-2 ¢+ Efficiency Dynamic C 5.x

2. Avoid auto variables within functions whenever possible. To save
code space and execution time while preserving reentrancy, use the
register storage class for one- or two-byte items.

3. The shared and the protected keywords in data declarations cause
slower fetches and stores, except for one-byte items and some two-byte
items.

4. When there are more than 128 bytes of auto variables declared in a
function, keep in mind that the first 128 bytes are more easily accessed
than later declarations, owing to the limited 8-bit range of Z180 IX
register addressing.

Execution Speed

Compiler Options can be used to set a switch to optimize for speed or for
size. The default is size. If speed is selected, then the program size might
increase somewhat. Using static variables with nodebug functions will
increase program speed greatly. Stack checking must be disabled for good
speed.

Subfunctions

Subfunctions, extensions in Dynamic C, allow often-used code sequences
to be turned into a “subroutine” within the scope of a C function.

func () {
int aname () ;
subfunc aname: { k = inport (x); k + 4; }

: aname () ;
: aname () ;

}

The subfunction is prototyped as if it were a regular function. It must be
static and may not have any arguments. Variables used within the
subfunction must be available within the scope of the parent C function.
The actual code after the subfunc keyword can appear anywhere in the
enclosing function. The return value, if any, is indicated by placing an
expression followed by a semicolon at the end of the subfunction body.
This causes the expression value to be loaded into the primary register (HL
or BCDE).

Technical Reference Efficiency ¢+ B-3

All subfunction calls take three bytes, low overhead compared to some
simple expressions. For example, the expression *ptr++ can generate 14
bytes or more. Substitute the following code.

static char nextbyte() ;
subfunc nextbyte: *ptr++;

nextbyte () ;
nextbyte () ;

This can save ten or more bytes each time nextbyte occurs.
Subfunctions can also make a program easier to read and understand if
descriptive names are used for obscure expressions. The advantage of the
subfunction over a regular function is that it has access to all the variables
within the program and the calling overhead is low.

Observe that the equivalent C function
nextbyte(char *ptr) { return *ptr++; }

can be used for the same purpose. However, the calling overhead is much
greater, a minimum of eight bytes, and at least eleven bytes if ptr is an
auto variable.

Subfunction calls cannot be nested.

Function Entry and Exit

The following events occur when a program enters a function.:

1. Save IX on the stack and make IX the stack frame reference pointer (if
in useix mode).

2. Create stack space for auto variables or to save register variables.
Set up stack corruption checks if stack checking is on.

4. Notify Dynamic C of the entry to the function so that single-stepping
modes can be resolved (if in debug mode).

Items three and four consume significant execution time and are eliminated
when stack checking is disabled or if the debug mode is off.

Disable stack checking if speed is needed during debugging. In general,
avoid using auto variables, except when a function must be reentrant.
Using the IX register as a frame reference pointer (useix and #useix
options) results in faster and more compact access to arguments and auto
variables, especially for char variables. The useix option is especially
valuable when embedding assembly language inside a C program. In this
case it is easiest to access the variables using the ix register. Use
nouseix only for functions that can suspend under the real-time kernel.

B-4 ¢+ Efficiency Dynamic C 5.x

Aprenpix C: SOFTWARE LIBRARIES

Technical Reference Software Libraries ¢+ C-1

Dynamic C’s function libraries provide a way to bring in only those
portions of system code that a particular program uses. The file LIB.DIR
contains a list of all libraries known to Dynamic C. This list may be
modified by the user. In particular, any library created by a user must be
added to this list.

Libraries are “linked” with a user’s application through the #use directive.
Files identified by #use directives are nestable, as shown in Figure C-1.

Application X.LIB Y.LIB
huse x.1ibA—] #use y.1ib4— 7 11
main () { function | |77
- function
#use z.lib function ZLIB
#use z.lib T

m | -

Figure C-1. Linking Nestable Files in Dynamic C

The file DEFAULT . H contains several lists of libraries to #use, one list for
each product that Z-World ships. Dynamic C usually knows which
controller is being used, so it selects the libraries appropriate to that
controller. These lists are the defaults. A programmer may find it conve-
nient or necessary to add or remove libraries from one or more of the lists.

The default libraries for a Z-World controller contain many function
names, global variable names, and in particular, many macro names. It is
likely that a programmer may try to use one of the Z-World names for a
newly written program. Unpredictable problems can arise. Z-World
recommends that DEFAULT . H be edited to comment out libraries that are
not needed.

Table C-1 lists the libraries included with Dynamic C. Other libraries,
LSTAR.LIB, MICROG.LIB, LGIANT.LIB, RG.LIB, SCOREZ1.LIB,
LPLC.LIB, and PS.LIB exist only for backward compatibility.

C-2 + Software Libraries Dynamic C 5.x

Table C-1. Libraries Included with Dynamic C

5KEY. LI B The basic “five-key system” for the PK2100 series arj
PK2200 series controllers.

5KEYEXTD. LI B | Extensions to the “five-key system.”

961 O LIB Driver functions for the BL1100’s DGL96 daughter
board.

AASC. LI B Abstract Asynchronous Serial Communication
functions.

AASCDI O LI B STDIO-specific routines supporting the AASC library

AASCSCC. LI B SCC-specific routines to support the AASC library. The

SCC is the Zilog 85C30 Serial Communication
Controller.

AASCUART. LI B

XP8700 series support for the AASC library. The
XP8700 is formerly the RS232 PLCBus expansion
board.

AASCZ0. LI B Z0-specific routines to support the AASC library. Z0
the 2180 ASCI Serial Port 0.

AASCZ1. LI B Z1-specific routines to support the AASC library. Z1
the 2180 ASCI Serial Port 1.

AASCZN. LI B ZNet-specific routines to support the AASC library.

BICS. LIB Contains prototypes of functions and declarations of
variables defined in, and used by, the BIOS.

BL1000. LI B Functions for the BL1000.

BL11XX. LI B Functions for the BL1100.

BL12XX. LI B Empty library.

BL13XX. LI B Functions for the BL1300.

BL14_15.LIB Functions for the BL1400 series and BL1500 series
controllers.

BL16XX. LI B Functions for the BL1600.

Cl RCBUF. LI B Abstract data type functions for circular buffers (used
the AASC driver).

CWr1_72.LIB Functions for the CM7100 series and CM7200 series
core modules. These are formerly the SmartCore Z1
Z2.

CPLC. LI B Functions for PK2100, PK2200, and BL1600.

continued...

Technical Reference

Software Libraries ¢+ C-3

[=X

by

and

Table C-1. Libraries Included with Dynamic C (continued)

DC. HH This file contains definitions basic to, and required by,
Dynamic C. Thisfileisrequired.

DEFAULT. H Containslists of #use directives for various Z-World
controllers. Dynamic C automatically selectsthelist
appropriate for controller being programmed.

DVA. LI B Support functions for the Z180 on-chip DMA (direct
memory access) channels.

DRI VERS. LI B Driver functions for some hardware devices.

EZI O LIB Driver functions for a board-independent unified 1/0
space.

EZI OCMWN. LI B | Common definitionsfor al EZIO.. libraries.

EZIOPBDV.LIB PLCBus device drivers supporting the EZIO library.

EZIOPK23.LIB PK 2300 function support for the EZIO library.

EZIOPLC.LIB PLCBus functions for boards that have native PLCBus
ports (BL 1200 series, BL1600 series, PK2100 series,
and PK2200 series.

FK.LIB New “five-key system” support for the PK2100 series
and PK2200 series controllers. They are to be used
cooperative multitasking (i.e., costatements).

| OEXPAND. LI B | Driver functions for BL1100 series daughter boards.

KDM LI B Driver functions for Z-World KDMs (keyboard/display
modules).

LCD2L. LI B Two-line LCD support for the PK2100 series and
PK2200 series controllers.

MATH. LI B Useful mathematical and trigonometric functions.

M SC. LI B Miscellaneous functions for KDM support.

MODEM232. LI B | Modem functions for the PK2100 series and PK2200
series controllers. Used wit0232. LI B,

S0232. LI B, XP87XX. LI B, NETWORK. LI B and
SCC232. LI B.

NETWORK. LI B Opto22 9-bit binary protocol to support master-slave
networking. Uses ASCI port 1 of the Z180.

PBUS LG LI B Functions that operate the PLCBus with a BL1100.

PBUS TG LI B Functions that operate the PLCBus with a BL1000.

continued...

C-4 + Software Libraries

Dynamic C 5.x

th

Table C-1. Libraries Included with Dynamic C (concluded)

PK21XX. LI B Functions for the PK2100.

PK22XX. LI B Functions for the PK2200.

PLC EXP.LIB PLCBus functions for boards that have native PLCBus
ports (BL 1200 series, BL 1600 series, PK2100 series,
and PK2200 series).

PRPORT. LI B Functions that implement a parallel port communication
protocol between a controller and a PC.

PWM LI B Pulse-width modulation functions.

RTK. LI B Real-time kernel (RTK).

S0232.LIB Serial communication driver for SIO port 0 on the
BL 1100 series controller.

S1232.LIB Serial communication driver for SIO port 1 on the
BL 1100 series controller.

SCC232. LI B Serial communication driver for the ports on the SCC
chip, Zilog's 85C30 Serial Communication Controller.

SRTK. LI B Simplified real-time kernel for all controllers.

STDIO. LI B Functions relating to th8TDIO window in Dynamic C.

STRING LI B This file contains functions for manipulating strings.

SYS. LI B General system functions.

VDRI VER. LI B Virtual driver functions (for all controllers).

XMEM LI B Functions for moving information to and from extend¢d
memory, as well as other functions (such as address|
computation) related to extended memory.

XP82XX. LI B Driver functions for the XP8200 series PLCBus board.

XP87XX. LI B Serial communication functions for an XP8700 serieq
PLCBus board.

XP87XX2. LI B Serial communication functions that support a secongl
XP8700 (seXP87XX. LI B below).

XP88XX. LI B Functions for the XP8800 series PLCBus device.

Z0232. LI B Serial communication driver for Z0. Z0 is the Z180
ASCI Serial Port 0.

Z1232.LIB Serial communication driver for Z1. Z1 is the Z180
ASCI Serial Port 1.

ZNPAKFMT. LI B | Lower level functions supporting the ZNet.

Technical Reference

Software Libraries ¢+ C-5

Headers
Table C-2 describes the three kinds of headers in Dynamic C libraries.

Table C-2. Dynamic C Library Heaaders

Library headers Describelibraries. Library headers should tell a
programmer how to use the library.

Function headers Describe functions. Function headers form the
basis for function lookup help.

Module headers Makes functions and global variablesin the
library known to Dynamic C

Users who develop their own libraries are encouraged to include descrip-
tive headers for all functions. In particular, accurate and correctly format-
ted headers need to defined for function help to work with functions.

Library Headers

A library has a single header at the beginning that describes the nature of
the library. The header is a specially formatted comment, such as the
following example.

/* START LIBRARY DESCRIPTION

khkkhkkkhkkkhkhkkhkkkkhkkkhkkkkx

DRIVERS.LIB

Copyright (c) 1994, Z-World.

DESCRIPTION: Miscellaneous hardware drivers li-
brary. Many of these routines disable inter-
rupts for short periods. Define NODISINT to
prevent this.

SUPPORT LIBRARIES:

END DESCRIPTION
Kkkhkkhkkkhkhhhkhhkhhkkhhkhkkkkkdkk /

C-6 + Software Libraries Dynamic C 5.x

Function Headers
Each function in a Z-World library has a descriptive header preceding the
function to describe the function.

The header is a specially formatted comment, such as the following
example.

/* START FUNCTION DESCRIPTION
hkkkkkkhkhkhkhkhkhkhhdhhkkkk

plcport <DRIVERS.LIB>
SYNTAX: int plcport(int bit);
KEY WORDS:

DESCRIPTION: Checks the specified bit of the PLC
bus port.

RETURN VALUE: 1, if specified bit is set, else
zero.

END DESCRIPTION
Fokkdkkkkkkhkkkkdkkkkkkkkkkkkkkkkkkdkk /

Function headers are extracted by Dynamic C to provide on-line help
messages.

Modules

A library file contains a group of modules. A module has three parts: the
key, the header, and a body of code (functions and data).

A module in a library has a structure like this one.
/*** BeginHeader func,, var,, */

prototype for func,
declaration for var,

/*** EndHeader */

definition of func, var, and possibly other
functions and data

The Key
The line (a specially-formatted comment)

/*** BeginHeader name,, name,, */
begins the header of a module and contains the key of a module. The key
is a list of names (of functions and data). The key tells the compiler what
functions and data in the module are available for reference. It is impor-

tant to format this comment properly. Otherwise, Dynamic C cannot
identify the module correctly.

If there are many names after BeginHeader, the list of names can
continue on subsequent lines. All names must be separated by commas.

Technical Reference Software Libraries ¢+ C-7

The Header

Every line between the comments containing BeginHeader and
EndHeader belongs to the seader of the module. When an application
#uses a library, Dynamic C compiles every header, and just the headers, in
the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and
variable declarations, a module header ensures proper type checking
throughout the entire application program.

The Body

Every line of code after the EndHeader comment belongs to the body of
the module until (1) end-of-file or (2) the BeginHeader comment of

another module. Dynamic C compiles the entire body of a module if any
of the names in the key are referenced (used) anywhere in the application.

To minimize waste, Z-World recommends that a module header contain
only prototypes and extern declarations. (Prototypes and extern
declarations do not generate any code by themselves.) Define code and
data only in the body of a module. That way, the compiler will generate
code or allocate data only if the module is used by the application pro-
gram. Programmers who create their own libraries must write modules
following the guideline in this section. Remember that a library must be
included in LIB.DIR and a #use directive for the library has to be placed
somewhere in the code.

C-8 + Software Libraries Dynamic C 5.x

“am

D

Appenpix D: EXTENDED MIEMORY

Technical Reference Extended Memory ¢ D-1

Physical Memory

Depending on PAL coding and board jumper settings, Z-World controllers
can address up to 512K of ROM or 256K of flash memory, and 512K of
RAM. The maximum memory available is 1 megabyte total.

Usually, memory chips installed on Z-World controllers have a capacity
less than 512K. A typical SRAM chip has 32K or 128K.

If a memory chip has less than 512K, addresses outside the
memory range map to addresses within the range. For

/ example, for a 32K chip, addresses evaluate modulo 32K.
If memory is addressed beyond the range of the chip, data
may seem to be replicated in memory. Or worse, data may
be overwritten.

Memory Management

7180 instructions can specify 16-bit addresses, giving a logical address
space of 64K (65,536 bytes). Dynamic C supports a 1-megabyte physical
address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit Z180
addresses to 20-bit memory addresses. Three MMU registers (CBAR,
CBR, and BBR) divide the logical space into three sections and map each
section onto physical memory, as shown in Figure D-1.

CBAR Common/Bank Area Register FFFFF
CBR Common Base Register
BBR Bank Base Register /. CBR
CBAR
Com | Bank ,'///
e XMEM
> E000 e
€000
A000
8000 ROOT
6000
4000 - BBR
L 2000 =zl
0000 BOS | BIOS 00000
Logical Space Physical Space

Figure D-1. Z180 On-Chip Memory Management Unit (MMU) Registers

D-2 + Extended Memory Dynamic C 5.x

The logical address space is partitioned on 4K boundaries. The upper half
of the CBAR identifies the boundary between the ROOT memory and XMEM.
The lower half of CBAR identifies the boundary between the BIOS and the
ROOT. The start of the BIOS is always address 0. The two base registers
CBR and BBR map XMEM and ROOT, respectively, onto physical memory.

Given a 16-bit address, the Z180 uses CBAR to determine whether the
address is in XMEM, BIOS, or ROOT. If the address is in XMEM, the Z180
uses the CBR as the base to calculate the physical address. If the address
is in ROOT, the Z180 uses the BBR. If the address is in the BIOS, the Z180
uses a base of 0.

A physical address is, essentially,
(base << 12) + logical address.

Figure D-2 shows the address locations.

15 12 1 0

logical address

+

0

LI L L B O B B

physical address

Figure D-2. Z180 Physical Addresses

Technical Reference Extended Memory ¢ D-3

Memory Partitions

Table D-1 explains the memory partitions in Dynamic C.

Table D-1. Dynamic C Memory Partitions

Name

Size

Description

BIOS

8K

Basic Input/Output System. The BIOSis dways
present and is always mapped to address 0 of ROM
or flash. The BIOS contains the power-up code, the
communication kernel, and important system
features.

ROOT

48K

The area between the BIOS and XMEM (the bank
area). The root—“normal” memory—resides in a
fixed portion of physical memory. Rocbde grows
upward in logical space from address 2000 (hex)
and rootdata (static variables, stack and heap) grg
down from E00O. (Initialized static variables are

placed with code, whether in ROM, flash, or RAM.

W

—

XMEM

8K

XMEM is essentially an 8K “window” into extende
physical memory. XMEM can map to any part of
physical memory (ROM, flash, or RAM) simply by
changing the CBR.

The XMEM area has many mappings to physical memory. The mappings
can change by changing the CBR as the program executes. Extended
memory functions are mapped into XMEM as needed by changing the CBR.
The mapping is automatic in C functions. However, code written in
assembly language that calls functions in extended memory may need to do
the mapping more specifically.

D-4 + Extended Memory

Dynamic C 5.x

Functions may be classified as to where Dynamic C may load them. The
keywords in Table D-2 apply to function definitions.

Table D-2. Memory Keyword Definitions

Keyword

Description

root

The function must be placed in root memory. It can call
functions residing in extended memory.

Xxmem

The function must be placed in extended memory. Callsto
extended memory functions are not as efficient as calls to
functions in root memory. Long or infrequently used
functions are appropriate for placement in extended memory.

anymem

This keyword lets the compiler decide where to place the
function. A function’s placement depends on the amount
reserve memory available. Refertkee Memory Options
command in th©PTIONS menu.

of

Depending on which compiler options are selected, code segments will be
placed in RAM, ROM, or flash.

Figure D-3 shows the memory layout with code in RAM.

Code PlacedinRAM [
| __XMEM CODE
>~ RAM
ROOT DATA
FFFF XMEM
E000 ROOT CODE
ROOT DATA
>~ EPROM
ROOT CODE
0000 BIOS > BIOS 00000
Logical Space Physical Space

Figure D-3. Memory Layout with Code in RAM

Technical Reference

Extended Memory ¢ D-5

Figure D-4 shows the memory layout with code in ROM or flash.

Code Placed in /- RAM
ROM or flash
ROOT DATA
FFFF XMEM ~
E000
ROOT DATA
,,,,,,,,,,,,,,,,,, >~ EPROM
|_____XMEM
ROOTCODE |——— ROOT CODE
0000 BIOS > BIOS | Jooooo
Logical Space Physical Space

Figure D-4. Memory Layout with Code in ROM or Flash

Memory management in Dynamic C is automatic. The Dynamic C
compiler emits code that will set the mapping registers.

Control over Memory Mapping

The programmer controls how Dynamic C allocates and maps memory.

AN Refer to the discussion of the OPTIONS menu in Chapter 4,
The Dynamic C Environment.

Extended Memory Functions

Physical memory is divided into 4K “pages.” Two consecutive pages are
visible in the extended memory window (XMEM) at any one time. Addi-
tional code is required to handle calls to functions or jumps to locations
not currently mapped in the extended memory window.

A program can use many pages of extended memory. Under normal
execution, code in extended memory maps to the logical address region
E000,, to F000,,, the lower half of XMEM. As execution approaches FO00,
the pages are shifted so that the code in the region FOOO to FFFF (the
upper half) is moved down to the EO00 to FOOO region. The program
automatically calls a function in root memory to accomplish this task. The
function modifies the CBR to “slide” the code down one page and then

D-6 ¢+ Extended Memory Dynamic C 5.x

jumps to the new location. This transfer of control is made is at the end of
the first statement that crosses FO00. (Hence, no single C expression can
be more than 4K long.)

However, switch or while statements that cause program jumps can be
as long as desired. If a jump crosses page boundaries, the program uses a
bouncer to execute the jump.

While any C function can call any other C function, no matter where in
memory it is located, calling a function located in extended memory is less
efficient than calling a function in root memory. That is because the
program must use a bouncer to modify the CBR before and after the call.

A bouncer is a 4-byte code in root memory that points at the extended
memory function and manipulates the stack and the CBR. Because of
bouncers, calling extended memory functions is no different from calling
root memory functions, assembly language or otherwise. A4// function
“entry points” are in root memory.

Suggestions
Pure Assembly Routines

Pure assembly functions (not inline assembly code) must reside in root
memory.

C Functions

C functions can be placed in root memory or extended memory. While
access to variables in C statements is not affected by the placement of the
function, there is bouncer overhead to call C functions in extended
memory. Dynamic C will automatically place C functions in extended
memory as root memory fills. Short, frequently used functions may be
declared with the keyword root to force Dynamic C to load them in root
memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of
whether it is compiled to extended memory or root memory.

However, because the bouncer of an extended memory function introduces
four more bytes between the last pushed argument and the return address,
the actual offset of arguments from the stack pointer depends on whether
the code is compiled to extended memory or not. Therefore, it is important
to use the symbolic names of stack-based variables instead of numeric
offsets to access the variables. For example, if j is a stack variable, @sp+3
is the actual offset of the variable from the stack pointer. Alternatively, if
IX is the frame reference pointer, “ix+7j” specifies the address of the
stack-based variable.

Technical Reference Extended Memory ¢ D-7

Dynamic C issues a warning when it finds assembly code embedded in an
extended memory function to discourage inline assembly segments that do
not use symbolic offsets for stack-based variables. The warning can be
disabled by appending the keyword xmemok after the #asm directive. Use
symbolic names, not numeric offsets.

All static variables, even those local to extended memory

/ functions, are placed in root memory. Keep this in mind if
functions have many variables or large arrays. Root
memory can fill up quickly.

Extended Memory Data

Most of the details of calling extended memory functions are handled by
the compiler. The situation is more complicated for extended data. To
access extended memory data, use function calls to exchange data between
extended memory and root memory. These functions are provided in the
Dynamic C libraries.

4 See XMEM.LIB.

Extended memory addresses are 20-bit physical addresses (the lower 20
bits of a long integer). Pointers, on the other hand, are 16-bit machine
addresses. They are not interchangeable. However, there are library
functions to convert address formats.

Dynamic C includes two nonstandard keywords to support extended
memory data: xstring and xdata.

The declaration
xstring name { string 1, ... string n };

defines a table of 20-bit physical string addresses, and corresponding
strings. The term name represents the 20 bit physical address of the table.

name —>| table | —> "abe"
| > "start"

| L—>"stop"
L’ "on"
NofEN

The xdata statement has two forms. The declaration

20-bit
addresses

xdata name { value 1, ... value n };

defines a block of initialized extended memory data. The values must be
constant expressions of type char, int, unsigned int, long, un-
signed long, float, Or string.

D-8 ¢+ Extended Memory Dynamic C 5.x

name —> 10

5.73 |
YA'
65575L |

"start" ‘

The other form

xdata name [n];

defines a block of 7 bytes in extended memory.

name —>|

n bytes

In either case, the term name represents the 20-bit (physical) address of the
block.

Use the following functions to move blocks of data between logical
memory and physical memory. Pass addresses of extended memory data
as long integers containing the 20-bit physical address in the least signifi-
cant bits. Names declared with xdata and xstring are 20-bit extended
memory addresses.

xmem2root(long src, void *dst, uint n)

Copies n bytes from extended memory (src) to root memory starting
at dst.

root2xmem (void *src, long dst, uint n)

Copies n bytes from root memory (src) to extended memory starting
at dst.

uint xstrlen (long address)

Returns the length of the string at the address found at address. Keep
in mind that an xstring declares an array of 20-bit addresses of
strings.

long xgetlong (long address)

Returns the long integer at the extended memory address.

Technical Reference Extended Memory ¢+ D-9

The following example illustrates the use of extended memory.

xstring greetings {“hello there”,

“good-bye”,

“‘nice to see you”,

“how have you been”};
xdata table { 1.23, 1.45, 1.67, 1.85,

1.93, 2.04, 5.03, 6.78 };
xdata store[10000];

main () {
float y;
long j, k;
int a;
char my chars[30];

// get one floating number at j

ji= ...
xmem2root (table + j*4, // x address
&y, // destination
4); // # bytes
// two bytes from store
j=.

xmem2root(store + j, &a, 2);
root2xmem(&a, store + j, 2); // other direction

// copy string to root
j=2; // if we want “nice to see you”
k = xgetlong(greetings+j*4);// addr of XMEM string
xmem2root(k,
my chars, // destination
xstrlen(k)+l);// 1 is for null byte

/ Declarations involving xdata and xstring must be made
outside the context of a function.

e Refer also to XDATA. C in the Dynamic C SAMPLES
subdirectory for another example.

D-10 + Extended Memory Dynamic C 5.x

Aprenpix E: CoMPILER DIRECTIVES

Technical Reference Compiler Directives ¢+ E-1

Compiler directives are commands that instruct the compiler how to
proceed. They take the form of preprocessor commands, an example of
which appears here.

#nouseix

These directives are detailed in Chapter 5, The Language.
& (The #nodebug directive automatically disables index
checking, pointer checking and stack verification.)

Default Compiler Directives

Default compilation options are specified in the library header file DC. HH.
The file DC. HH is compiled before any other library or user code. The
following major defaults are set in DC. HH.

1. The default storage class for variables is static.
#class static

This default may be changed, but Z-World libraries will not work then.
However, static is far more efficient and auto is often not required
in embedded programming. Reentrant functions require auto vari-
ables.

2. The default memory allocation is anymem.
#memmap anymem
This allows Dynamic C to choose between root memory and extended
memory.
3. The nodebug option is enabled when compiling code to ROM.

#if ROM ==
#nodebug
#endif

The #nodebug global directive has extensive implications for gener-
ated code. Stack, index and pointer checking are disabled. All
debugging features are removed from the code (especially RST 28s,
which are used for break points). This generates smaller code that runs
efficiently.

4. The default for the use of the IX register is #nouseix.

E-2 + Compiler Directives Dynamic C 5.x

r

Aprenoix F: - FILE FORMATS

Technical Reference File Formats ¢+ F-1

Use the Compile to File or Compile to File with *.RTI File command to
generate an output file. Select the appropriate output file format in the
Compiler Options dialog.

Layout of ROM Files

When a program (say, £ilename.C) is compiled for ROM, the compiler
generates a file named filename.BIN. Dynamic C can also create an
extended Intel HEX file (£ilename.HEX).

Select the Code with BIOS compiler option. Check the Create HEX file
also box to create an Intex hex file.

The resulting file contains the three code segments back-to-back. (Initial-
ized data are constants and considered code. Unitialized data are not
included in the ROM file.)

e

XMEM CODE

ROOT CODE

BIOS

00000

The BIOS included in the ROM file is either (1) a copy of the first 2000,
of ROM of a Z-World controller connected to a development system or (2)
a copy of the BIOS in an .RTI file, depending on the compile command
selected.

Layout of Downloadable Files

Select the .DLP for download compiler option for downloadable files.

A Details of the file format are found in Chapter 9, Remote
Download.

F-2 + File Formats Dynamic C 5.x

Layout of Download to RAM Files
Select the Code with no BIOS compiler option.

The following diagram shows the locations of different segments in a
RAM file.

End of File
XMEM CODE
root data
48K
root code
RAM start

Uninitialized data do not occupy any space in the RAM file. The root is
always 48 kbytes long. The load address for the code in RAM is embed-
ded in the file output. The default load address is 40000, (256 kbytes) or
80000, (512 kbytes), but can be changed. A RAM file starts with root
code and not the BIOS, as the BIOS is expected to be in the ROM of the
receiving controller.

The memory map for a 32-kbyte SRAM is as above, but the architecture
takes advantage of memory reflection. The default code data gap is 8000,
(32 kbytes). This results in the actual layout of the code in the RAM as
shown below.

64K
XMEM
48K 32K memory
data reflection
root
code T
32K
XMEM
16K N 32K “real”
data memory
root
0 code

Technical Reference File Formats ¢+ F-3

The root data appear to start at 48 kbytes (and at 80 kbytes, 112 kbytes, ...)
since it really starts at 16 kbytes because of the duplication of the memory
image. Extended memory also appears to start at 48 kbytes. In this
scheme, the sum of root code and data is limited to 16 kbytes, and the total
extended memory code is limited to 16 kbytes.

/ Remember that all static variables, even those local to
extended memory functions, are placed in root memory.

Hex File Information

A HEX file includes an identification flag and other pertinent information.
This information starts at address 2300,, in a ROM file and at 0300, in a
RAM file, as indicated in Table F-1.

Table F-1. HEX File Information

0x?300 OXAA; identification byte

0x?301 0x55; identification byte

0x?302 0x81; identification byte

0x?303 0x42; identification byte

0x?7304 0x01 for ROM file, 0x00 for RAM file
0x?305-6 16-bit cyclic redundancy check

0x?307 BBR register value

0x?308-9 16-bit address of first free byte above root code

Startup code for the program appears at 2200, in a ROM file and at 0200,
in a RAM file. The startup code performs the following functions.

Load the stack pointer (SP).

Set the I register (interrupt base).

Enable interrupts (ei).

Call library function named . startup.

Call bfree to initialize heap management.

Set ERROR_EXIT to exit () as a default.

Set aux stack (checking and debugging) and stack limit.
Reset RST 28 vector to debugger.

X N LA Wb -

Push time in seconds since 1-JAN-1980 on stack as an unsigned
long.

10. Push program revision, as an int, on stack.
11.Call main ().

F-4 + File Formats Dynamic C 5.x

Jumping to Another Program

Conceivably, several programs may be downloaded, all in different
sections of physical memory. There is a function resident in ROM that
makes it possible to jump from one program to another.

void newbbr(uint offset, uint CBAR BBR)

This function does not return, but jumps to and starts up the program
specified by its arguments.

For example, say a program has been downlaoded at address 9C000,,.
Then, the BBR is 9C, — 2, (for the size of the BIOS) or 9A ;. The CBAR
is always E2, (for RAM). The offset is always 2200, (for RAM). The
following call to newbbr would be made.

newbbr (0x2200, O0xE29A)

Using the newbbr function requires a fair amount of mastery with Dy-
namic C and the target controller.

Burning ROM

Z-World controllers support several types of EPROM, Including the
following.

27C256 32 kbytes 28 pins

27C512 64 kbytes 28 pins

27C010 128 kbytes 32 pins
Copyright Notice

The Dynamic C library is copyrighted. Place the following copyright
notice on any ROM created with Dynamic C.

< © 1990-1997 Z-World, Inc.)

In addition to this notice, a copyright notice may be added to protect other
user-written code.

Purchasers of the copyrighted Dynamic C software and a copyrighted
Z-World ROM are granted permission to copy the ROM, as described
above, provided that

1. The resulting ROMs are used only with Z-World controllers.
2. The above copyright notice is placed on the ROM.

Technical Reference File Formats ¢+ F-5

F-6 ¢ File Formats Dynamic C 5.x

Arrenpix G: RESET FUNCTIONS

Technical Reference Reset Functions ¢ G-1

Z-World’s embedded applications need to differentiate the cause of resets
and restarts. Table G-1 lists some possible hardware resets.

Table G-1. Possible Hardware Resets

Regular reset The system/ RESET lineis pulled low and rel eased.

Power failure Power drops below a threshold, and the supervisor chip
reset pulls/ RESET low and causes a reset.

Watchdog reset | The watchdog timer was not resest. It pulls/ RESET
low and causes areset.

In addition to these hardware resets, an application may cause a super
reset. A super reset is necessary because important system data should
persist over the occurrence of regular resets and power failures.

Z-World’s super reset is a mechanism to initialize certain persistent data in
battery-backed RAM. A normal reset does not initialize these data, but
retains their values. A super reset always occurs when a program is first
loaded. Subsequent resets are normal resets, unless the software performs
a super reset intentionally.

Reset Differentiation

Dynamic C includes a set of functions to differentiate the various resets.
These functions are grouped into two main categories.

1. The function names begin with an underbar (_), have important side
effects, and may only be called once and only once at the beginning of
the main program.

2. The function names do not begin with an underbar, have no side
effects, and may be called anywhere in a program.

¢ int _sysIsSuperReset()

This function detects whether a super reset was requested. The
function returns 1 if a super reset was requested and 0 if not.

If a super reset was requested, this function calls _prot_init to
initialize the protected variable feature. In addition, it calls the
function chain sysSupRstChain. Additional code may be added to
this function chain.

If a super reset was not requested, this function also calls
_prot_recover to recover partially written protected variables.

G-2 ¢+ Reset Functions Dynamic C 5.x

¢ int _sysIsPwrFail()

This function determines whether the system had a power failure just
before restarting. The function return 1 if a power failure occurred and
0 otherwise. A custom power-failure handler cannot be used with this
function.

¢ int _sysIsWDTO()

This function determines whether the system was reset by a watchdog
timeout. The function returns 1 of a watchdog timeout occurred and 0
otherwise.

The following is the recommended reset detection sequence. It should
be done before anything else in the main function.

main () {
declarations

if (_sysIsSuperReset()) {
statements

}else if(_sysIsPwrFail()) ({
statements

}else if(_sysIsWDTO()) {
statements
}else{

statements

}

rest of main

}
Functions of the second category have names similar to those in the first
category, but they do not have initial underbars.

int sysIsSuperReset ()

int sysIsPwrFail ()

int sysIsWDTO()
These functions reflect the cause of the last reset. They can be called

anywhere in the program as often as needed. Functions of the first
category can only be called at the beginning of main.

Technical Reference Reset Functions ¢+ G-3

Reset Generation

Software can generate two types of system reset.

Call sysForceReset to turn off interrupts and wait until the watchdog
resets. This reset will be registered as a watchdog reset when the applica-
tion restarts.

Call sysForceSupRst to request a super reset. This function turns off
interrupts and waits until the watchdog resets. This reset will be registered
as a super reset when the application restarts.

The controller must have a hardware watchdog enabled for either of these
functions to work.

G-4 ¢+ Reset Functions Dynamic C 5.x

APPENDIX H:
Existing FuncTioN CHAINS

Technical Reference Exisitng Function Chains ¢ H-1

The function chains in Table H-1 exist in the libraries specified. Segments
may be added to these chains. Do not redefine the chain if any of these

libraries is being used.

Table H-1. Dynamic C Function Chains

Library Function Chain

Description

AASC. LI B _aasclni t DF

Register AASC hardware-
dependent function pointers.

AASC. LI B _aascl ni t DF_DLP

Register AASC hardware-
dependent function pointers,
but only for download
programs.

SRTK. LI B _srtk_hi ght ask

A chain of code called by
SRTK every 25 msin the high-
priority task.

SRTK. LI B _srtk_|l owt ask

A chain of code called by
SRTK every 100 msin the low-
priority task.

SYS. LIB sysSupRst Chai n

Chain of tasks to perform when
super resetting.

VDRI VER LIB | _GLOBAL_INIT

Performs general global initial-
ization tasks. Usersare
encouraged to add segmentsto
this chain.

H-2 ¢+ Existing Function Chains

Dynamic C 5.x

Arrenoix I: INEW FEATURES

Appendix I lists the changes from the previously released version (4.11) of
Dynamic C. This revision is Dynamic C 5.0.

Technical Reference New Features ¢ I-1

Macros with Parameters

The #define directive is now implemented according to the ANSI
standard and handles simple macros and macros with parameters. It
supports the # and ## macro operators. Macros can have up to 32
parameters and can be “nested” to 126 levels.

Function Chaining

Function chaining, a new concept, and unique to Dynamic C, allows
special segments of code to be distributed in one or more functions. When
a named function chain executes, all the segments belonging to that chain
execute. Function chains allow software to perform initialization, data
recovery, or other kinds of tasks, on request.

Dynamic C provides two directives, #makechain and #funcchain, and
one keyword, segchain.

Function chain segments defined with segchain must appear in a function
directly after data declarations and before executable statements. A
program will call a function chain as it would an ordinary function that has
no parameters.

Global Initialization

Dynamic C provides a specific function chain: GLOBAL INIT. Any
global initialization may be added by adding segments to the

_GLOBAL INIT function chain using segchain, which supersedes the
former #GLOBAL_INIT directive. (The #GLOBAL_ INIT directive still
works.)

Printing

The contents of any Dynamic C window can now be printed. Three
commands (Print, Print Preview, and Print Setup, in the FILE menu)
support printing.

Miscellaneous

C operators may now be used to form constant expressions in assembly
code.

The INSPECT menu has a hexadecimal memory dump command that
allows a dump to screen or to file.

Dynamic C updates the DCW. INI and DCW. CFG files immediately with
current settings in response to the Save Environment command in the
OPTIONS menu.

The WINDOW menu provides horizontal and vertical tiling options.

-2 + New Features Dynamic C 5.x

Toolbar

Dynamic C now has a toolbar with buttons for common functions. The
toolbar may be turned on or off.

Compile Menu

The COMPILE menu has changed. Compiler options have also changed.
Dynamic C now supports targetless compilation, as well as several file
types for when compiling to a file. These are listed in Table I-1.

Table I-1. Dynamic C Compile Menu

Code with BIOS Normal EPROM output file. (Intel HEX
(*.BIN) format is also available.)
Null Device Produces no output, but compiles asif

generating EPROM.

Downloadable file (*.) For use with the Z-World Download Manager.
See below.

Code with no BIOS For backwards compatibility.
(*.BPF)

Function “Assistant”

The function lookup help facility has a new insert capability where the
function lookup dialog will help make a function call, parameter-by-
parameter. It will even write out the call.

Costatement Changes

The CoData structure has changed. If a program uses the Cobata
structure field start or done, the program will need to be updated. This
should be relatively easy to do.

Functions that operate on the CoData structure are now CoBegin,
CoReset, CoPause, and CoResume. Two other new functions now report
a CoData state: isCoDone and isCoRunnning.

Remote Download with Download Manager

Dynamic C offers a controller-resident download manager. It is in source
code as DIMO1. C in the SAMPLES\AASC subdirectory. Dynamic C has a
compiler option that generates downloadable program images. A serial
communication program such as ProComm faciltiates connection to a
controller, and using the download manager to download a program.

Technical Reference New Features ¢ I-3

New Libraries

AASC.LIB, AASCDIO.LIB, AASCSCC.LIB, AASCUART.LIB,
AASCZO0.LIB, AASCZ1.LIB, and AASCZN.LIB.

EZIO.LIB, EZIOCMMN.LIB, EZIOMGPL.LIB, EZIOPBDV.LIB,
EZIOPK23.LIB, and EZIOPLC.LIB.

Reset Functions

New functions allow the cause of a reset to be determined, and better
initialization of the software.

& See Appendix G, Reset Functions.

Backward Compatibility

The #GLOBAL INIT directive still works.

The Download to RAM compiler option exists to support an older
download mechanism.

-4 + New Features Dynamic C 5.x

J

Aprenoix J: Z=-WORLD PRoDUCTS

Technical Reference Z-World Products ¢ J-1

Name Description

PK2300 9.216 MHz packaged controller. Provides 19 digital 1/0 lines
(11 lines are configurable), 2 serial channels, aresistance
measurement input, and real-time clock. ABS enclosure.

PK2310 PK 2300, without RTC and resi stance measurement circuit.

PK2200 18.432 MHz packaged controller. Provides 16 digital inputs,
14 high-current outputs, 2 serial channels, and enclosure with
2x20 LCD and 2x6 keypad.

PK2210 PK 2200, with 9.216 MHz clock.
PK2220 PK 2200 without enclosure, LCD or keypad.

PK2230 PK2200 with a9.216 MHz clock. No enclosure, LCD or
keypad.

PK2240 PK2200 with a 128 x 64 EL backlit graphic LCD and 3 x 4
keypad.

PK2100 6.144 MHz packaged controller. Provides 7 digital inputs, 10
high-current outputs, 6 universal inputs, 2 SPST relays, 2
seria channels, one high-gain analog input, 2 analog outputs,
and arugged enclosure with 2x20 LCD and 2x6 keypad.
Operates at 24 volts DC.

PK2110 PK 2100 that operatesat 12 V DC.

PK2120 PK 2100 without enclosure, LCD or keypad.

PK2130 PK2120 that operates at 12 V DC.

BL1600 9.216 MHz board-level controller. Provides 12 digital inputs,
14 digital outputs, 2 serial channels, EEPROM and real-time
clock

BL1610 BL1600 without seria channels, high-current drivers,
EEPROM, or real-time clock.

BL1500 9.216 MHz board-level controller. Provides 24 PIO lines,
four 12-bit ADC channels, one RS232 channel, one R$485
channel, and real-time clock. 128K SRAM.

BL1510 BL1500 with 32K SRAM. No real-time clock. Provides 2
additional PIO lines.

BL1520 BL1500 with 32K SRAM. No real-time clock or 12-bit A/D
converter. Provides 2 additional PIO lines.

BL1400 6.144 MHz board-level controller. Provides 12 PIO lines, one
RS-232 channel, one RS-485 channdl and real-time clock.

BL1410 BL 1400 without the RS-485 channel and real-time clock.
Provides 2 additional PIO lines.

J-2 + Z-World Products Dynamic C 5.x

Name Description

BL1300 9.216 MHz board-level controller. Provides4 serial channels
and two 16-bit parallel ports. Optional enclosure.

BL1200 9.216 MHz board-level controller. Provides 8 optically
isolated inputs, 6 high-current outputs, and 2 RS-485
channels.

BL1100 9.216 MHz board-level controller. Provides 16 digital 1/0
lines, 8 high-current drivers, 7 10-bit ADC inputs, 2 RS-232
channels and 2 RS-485 channels. Switching power supply.

BL1110 BL1100 with alinear (not switching) power supply.

BL1120 BL1100 with a 12.288 MHz clock and linear (not switching)
power supply. Runs50% faster.

CM7100 | 18.432 MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, EEPROM, real-
time clock, and 691 supervisor.

CM7110 CM7100 with 9.216 MHz clock.
CM7120 | CM7100 with 9.216 MHz clock and 32K SRAM.

CM7130 CM7100 with 9.216 MHz clock and 32K SRAM. Without 691
supervisor, rea-time clock, and EEPROM.

CM7200 | 18.432 MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, rea-time
clock, 691 supervisor, and 128K flash EPROM.

CM7210 CM7200 with 9.216 MHz clock.

CM7220 | CM7200 with 9.216 MHz clock and 32K SRAM.

CM7230 | CM7200 with 9.216 MHz clock and 32K SRAM. Without 691
supervisor or real-time clock.

Other products include the BL 1000, the LP3100 and the PK 2400.

Technical Reference Z-World Products ¢ J-3

J-4 + Z-World Products Dynamic C 5.x

INDEX

Symbols

! logical NOT operator 5-43
'= operator 5-47

operator 5-10, 5-11

#4# operator 5-10, 5-11

#asm 2-7, 2-8, 5-9, 5-50,
6-2, 6-3, B-2, D-8

#class 2-10, 5-31, 5-51, E-2

#debug 5-27, 5-31, 5-33,
5-35, 5-51, B-2

#define 5-7, 5-10, 5-11, 5-
12, 5-39, 5-51, 5-52, 1-2

#elif 5-51, 5-52

#else 5-51, 5-52

#endasm 2-7, 2-8, 5-9, 5-50,
6-2, 6-3, 6-4

#endif 5-51, 5-52

#error 5-51

#fatal 5-51

#funcchain 2-5, 5-51, I-2

#GLOBAL _INIT (obsolete) -4

#GLOBAL _INIT (superseded) I-2

#if 5-51

#ifdef 5-52

#ifndef 5-52

#include

absence of 2-4,2-9, 5-3

#INT VEC 8-4

#interleave 5-52

#JUMP_VEC 8-3

#KILL 5-52

#makechain 2-5, 5-52, 1-2

#memmap 2-8, 5-31, 5-52, E-2

#nodebug 4-13, 5-27, 5-31,
5-33, 5-35, 5-37, 5-51,
B-2, E-2

#nointerleave 5-52

#nouseix 2-10, 5-31, 5-53, E-2

#undef 5-12, 5-53

#use 2-4, 2-9, 5-3, 5-7, 5-9,
5-53, C-8

#useix 2-10, 5-31, 5-53, B-4

#warns 5-51

#warnt 5-51

% operator 5-46
$= operator 5-49

& (address operator) 5-20, 5-45
&& operator 5-48
&= operator 5-49

() parentheses
as operators 5-42
(type) operator 5-44

* (indirection operator) 5-20, 5-44
*= operator 5-49

+ operator 5-44
++ increment operator 5-43
+= operator 5-48

-> right arrow operator 5-42

. dot
as operator 5-42

.DLP for Download 3-4, 3-5,
9-5, 9-6, F-2

/ operator 5-46
/= operator 5-49

; semicolon operator 5-4, 6-4

< operator 5-46
<< operator 5-46
<<= operator 5-49
<= operator 5-46

Technical Reference

Index ¢+ 1

= operator 5-48
== operator 5-47

> operator 5-47
>= operator 5-47
>> operator 5-46
>>= operator 5-49

? : operator 5-48

@RETVAL 6-12, 6-13
@sP 6-8, 6-9, 6-10, 6-12,
6-13, 6-16, D-7

[1 array indices 5-42
\ backslash 6-4
for character literals 5-10

~ operator 5-47
A= operator 5-49

_aascInitDF H-2
_aascInitDF DLP H-1
_GLOBAL_INIT 5-33, 7-4,
7-10, 7-11, H-2
function chain 2-6, 2-7, 1-2
initializing Cobata 7-4
_prot_init A-5, G-2
_prot_recover A-5, G-2
_srtk_hightask H-2
_srtk_lowtask H-2
_sysIsPwrFail 2-12, G-3
_sysIsSuperReset 2-12,
A-5, G-2, G-3
_sysIsWDTO 2-12, G-3

{ } curly braces 5-4

| operator 5-48

| = operator 5-49

| | operator 5-48

~ bitwise complement operator
5-43

27C010 F-5
27C256 F-5
27C512 F-5

A

AASC.LIB [-4

AASCDIO.LIB [-4

AASCSCC.LIB [-4

AASCUART.LIB [-4

AASCZO0.LIB [-4

AASCZ1.LIB [-4

AASCZN.LIB [-4

abort 5-26, 7-3, 7-4, 7-8, 7-10

About Dynamic C 4-40

abstract data types 5-6

active window 4-5

adc (add-with-carry) 6-2

Add to Top button 4-17

add-assign operator (+=) 5-48

add-with-carry (adc) 6-2

Add/Del Items «CTRL-W> 3-8,
4-17, 4-34

Add/Del Watch Expression
«CTRL-W> 3-8, 4-16, 4-17

adding watch window items
4-16, 4-17

address operator (&) 5-20, 5-45

address space 2-8

addresses in assembly language
6-6, 6-8

aggregate data types 5-18

ALT key 4-3

ALT-Backspace 4-9

ALT-C 4-12

ALT-CTRL-F3 4-12, 4-14

ALT-F 4-3, 4-4

ALT-F2 4-14, 4-16

ALT-F4 4-4, 4-8

ALT-F9 3-6, 4-14, 4-15

ALT-F10 3-7, 4-18

ALT-H 4-36

ALT-l 4-16

ALT-O 4-19

ALT-R 4-14

2 ¢+ Index

Dynamic C 5.x

ALT-SHIFT-backspace 4-9
ALT-W 4-30
always_on 7-3, 7-5, 7-8, 7-10
analog input 2-2
analog output 2-2
AND
assign operator (&=) 5-49
logical operator (&&) 5-48
anymem 4-26, 4-27, 5-26,
5-52, E-2
application files 5-2
argument passing 2-4, 2-10,
5-21, 6-7, 6-12, 6-13, 6-14
modifying value 5-21
arguments 2-10
arrange icons
command 4-30
arranged icons 4-33
arrays 5-18, 5-19, 5-21
bounds checking B-2
characters 5-40
indices 5-42
subscripts 5-18
arrow keys 4-2, 4-3
for cursor positioning 4-3
for editing text 4-3
ASCI serial port 6-15
assembly language 2-2, 2-7,
2-8, 3-6, 3-7, 4-15, 4-16,
5-9, 5-50, 6-2, 6-3, 6-4,
6-5, 6-12, 6-13, 6-14,
6-15, 6-16, B-2, D-7, 1-2
#asm directive 2-7, 2-8
#endasm directive 2-7, 2-8
embedding C statements 6-2
assembly window 2-2, 3-6,
4-30, 4-34, 6-2
assign operator (=) 5-48
assignment operators 5-48, 5-49
associativity 5-41, 5-42, 5-50
auto 2-4, 2-5, 2-10, 5-26,
5-51, 6-6, 6-7, 6-8, 6-9,
6-11, B-2, B-3, B-4, E-2
Auto Open STDIO Window 4-24

auxiliary stack A-4, F-4
size 4-26

B

backslash
character literals 5-40, 5-41
continuation in directives 5-50
backup battery 3-9
basic unit of a C program 5-4
battery backup 3-9
baud rate 4-28
BBR 5-22, 5-23, 5-24, D-2,
D-3, D-4, D-5, D-6, F-5
BCDE 6-3, 6-6, 6-7, 6-12,
6-13, 6-14, B-3
BeginHeader 2-9, 5-8, 5-9,
5-28, C-7, C-8
beginning of file 4-3
beginning of line 4-3
BIN files 3-4, 4-23, F-2
binary operators 5-41
BIOS 2-9, 3-4, 3-5, 3-7, 4-
23, 5-2, 5-22, 5-23, 5-
24, 5-28, 5-52, D-3, D-
4, D-5, F-2, F-3, F-5
bitwise
AND operator (&) 5-45
complement operator (~) 5-43
exclusive OR operator (*) 5-47
inclusive OR operator (]) 5-48
body
module 5-8, 5-9, C-8
bouncer D-7
BPF files 3-5
branching 5-15, 5-16
break 5-13, 5-14, 5-16, 5-26,
5-35
example 5-14
break points 2-2, 3-7, 4-15, 4-
16, 4-18, 5-31, 6-2, B-2,
E-2
hard 3-7, 4-14, 4-16
interrupt status 3-7, 4-14, 4-16
soft 3-7, 4-14, 4-16, A-3

Technical Reference

Index ¢+ 3

breaking out of a loop 5-14

breaking out of a switch statement
5-14

buttons, toolbar 4-29

Cc

C files 5-2
C functions calling assembly code
6-12
C language 2-2, 2-3, 2-4, 2-5,
2-6, 2-7, 2-8, 2-9, 2-10,
2-11, 3-6, 3-8, 5-2, 5-6,
5-17, 5-21, 5-25, 5-40,
6-5, 6-6, 1-2
C statements embedded in assembly
code 6-2
C strings 5-17
C variables in assembly language
6-6
cascaded windows 4-30, 4-31
case 5-16, 5-26, 5-27, 5-28,
5-35
case-sensitive searching 4-10,
4-11
cast operator (type) 5-44
CBAR 5-22, 5-23, 5-24, D-2,
D-3, D-4, D-5, D-6, F-5
CBR (common-base register)
4-18, 5-22, 5-23, 5-24,
6-12, 6-16, 8-2, D-2,
D-3, D-4, D-5, D-6, D-7
chains, see function chains
char 5-6, 5-27, 5-37, 5-54,
B-4, D-8
characters 5-40
arrays 5-17, 5-40
constants 5-40
embedded quotes 5-41
nonprinting values 5-40
special values 5-40
checking
array bounds B-2
indices E-2
pointers 5-20, B-2, E-2

checking
stack B-2, B-3, B-4, E-2
syntax 3-4
type 3-4,4-12, 5-5
check sum 9-4
ChkSum 7-11
ChkSum2 7-11
Clear Watch Window 4-16, 4-17
clipboard 4-9, 4-10
clocked serial communication 2-11
clocks 2-2
Close «<CTRL-F4> 4-5
closing a file 4-4, 4-5
CoBegin 7-4, 7-10, 7-11, I-3
CoData 7-3, 7-4, 7-9, 7-10,
7-11, 7-12, 7-14, 1-3
description 7-10
general usage 7-12
initialization 7-4
structure
user defined 7-13
code generation 4-12
code size B-3
Code with BIOS 3-4, 4-23, F-2
Code with no BIOS 3-5, F-3
coercion 5-44
COM port 4-28, 9-3
PC 1-3, 3-3, 9-3
comma operator 5-49
comments 5-4, 5-7
common base register (CBR)
6-12, 6-16
communication
RS-232 2-2, 2-11
RS-485 2-2, 2-11
serial 2-2, 2-11, 4-28, 8-3
clocked 2-11
with Dynamic C 3-3
compilation 3-3, 3-5, 4-2,
4-12, 4-14, 4-23, 4-33,
4-35, 5-52
direct 2-9
direct to controller 2-2
errors 4-12

4 ¢+ Index

Dynamic C 5.x

compilation
speed 2-2, 2-3
targetless 3-3, 3-4, 3-5, 4-
12, 4-14, 1-3
warnings 4-12
COMPILE menu 4-3, 4-12,
4-13, 4-14, 1-3
Compile to File <CTRL-F3>
3-4, 3-5, 4-12, 4-14,
4-23, 9-5, F-2
Compile to File with *.RTI File
<ALT-CTRL-F3> 3-3, 3-4,
3-5, 4-12, 4-14, 4-23,
9-6, F-2
Compile to Target <F3> 3-3,
4-12, 4-13
compiler directives 5-50, E-2
default E-2
Compiler options 3-4, 4-2,
4-12, 4-13, 4-19, 4-20,
4-21, 4-22, 4-23, 5-20,
9-5, B-3, D-5, F-2, F-3, 1-3
compiling 2-2, 3-3, 4-23
to file 3-3, 3-4, 3-5, 4-2,
4-12, 4-13, 4-14, F-2
to flash 4-13
to RAM 4-12, 4-13
to ROM 4-12, 4-14
to target 3-3, 3-5, 4-2,
4-12, 4-13
compound
names 5-38
statements 5-4
concurrent processes 2-4, 2-7, 7-2
conditional operation (? :) 5-48
constants
character 5-40
named 5-39
content 7-11
Contents
Help 4-36
continue 5-13, 5-14, 5-27, 5-35
example 5-14

cooperative multitasking 2-7,
7-2, 7-3, 7-4, 7-5, 7-6,
7-1, 7-8, 7-9, 7-10, 7-11,
7-12, 7-13, 7-14

CoPause 7-4, 7-10, I-3

copying text <CTRL-C> 4-9

copyright F-5

CoReset 7-4, 7-10, 7-11, I-3

CoResume 7-4, 7-10, I-3

costate 5-27, 7-4, 7-8, 7-12

costatements 2-4, 2-7, 5-26,
5-27, 5-37, 5-38, 7-2,
7-3, 7-4, 71-5, 7-6, 7-7,
7-8, 7-9, 7-10, 7-11,
7-12, 7-13, 7-14

abort 7-8

aborted 7-8

always on 7-3, 7-5, 7-8

firsttime flag and functions
7-11, 7-12

initially off 7-3, 7-5

initially on 7-3, 7-5

multiple threads 7-12, 7-13,
7-14

named 7-3, 7-4

shared code 7-13

shared data 7-14

state 7-3, 7-4, 7-5, 7-8,
7-10, 7-11

suspended 7-2, 7-3, 7-5,
7-6, 7-7, 7-8

syntax 7-4

unnamed 7-3, 7-4, 7-8

waitfor 7-5, 7-6

yield 7-7

CRC 94

Create *.RTI File for Targetless
Compile 3-3, 3-4, 3-5,
4-12, 4-14, 9-5

Create HEX File Also 4-23, F-2

creating

new file 4-4
standalone programs 3-9
CsSState 7-10

Technical Reference

Index ¢+ 5

CTRL key 4-3
CTRL-C 4-9
CTRL-F2 4-15
CTRL-F3 4-12, 4-14
CTRL-F4 4-5
CTRL-F10 3-7, 4-18
CTRL-G 4-11
CTRL-H 3-10, 3-11, 3-12,
4-38, 4-39, 4-40
CTRL- 3-7, 4-14, 4-16
CTRL-N 4-12
CTRL-O 3-6, 4-14, 4-16
CTRL-P 4-12
CTRL-U 3-8, 4-16, 4-18
CTRL-V 4-10
CTRL-W 3-8, 4-16, 4-17
CTRL-X 4-9
CTRL-Y 4-14, 4-16
CTRL-Z 3-8, 4-14, 4-15
curly braces { } 5-4
cursor
execution 3-6, 4-15, 4-16
positioning 4-11
positioning with arrow keys 4-3
text 4-2, 4-39
custom error handler A-2
cutting text <CTRL-X> 4-9

D

data in extended memory 5-53,
5-54, D-8, D-9, D-10
data types 5-18
aggregate 5-18
primitive 5-17, 5-18
db 6-4
DC.HH E-2
DCW.CFG 4-29, 1-2
DCW.EXE 3-2
DCW.INI 4-29, 1-2
DCWD.EXE 3-2
debug 5-27, 5-50
editor 4-27
mode 4-12, 4-14, B-4
same as run mode 3-5

debugger 2-2, 3-5, F-4
options 4-19, 4-23
debugging 2-2, 3-5, 3-6, 3-8,
4-14, 4-15, 4-16, 4-17,
4-18, 5-27, 5-30, 5-50,
5-51, 8-3, B-2, E-2, F4
assembly-level view 2-2
windows 3-5, 3-6
declarations 5-4, 5-8, C-7
decrement operator (--) 5-43
default 5-16, 5-28, 5-35
directives E-2
storage class 2-4, 2-5, 2-10
DEFAULT.H 2-9
Del from Top button 3-8, 4-17
Delay Functions 7-6
DelayMs 7-3, 7-11
DelaySec 7-3, 7-11
DelayTicks 7-3, 7-11
deleting watch window items
4-16, 4-17
demotion 4-21
descriptive function headers
3-10, 3-11
DI 3-7, 8-3
digital input/output 2-2
direct
compilation 2-2, 2-9
memory access (DMA) 2-11
directives 2-8, 5-50, 8-3, E-2
#asm 2-7, 2-8, 5-9, 5-50,
6-2, 6-3, B-2, D-8
#class 2-10, 5-51, E-2
#debug 5-27, 5-31, 5-33,
5-35, 5-37, 5-51, B-2
#define 5-7, 5-10, 5-11,
5-12, 5-51, 5-52, 1-2
#elif 5-51, 5-52
#else 5-51, 5-52
#endasm 2-7, 2-8, 5-9,
5-50, 6-2, 6-3, 6-4
#endif 5-51, 5-32
#error 5-51
#fatal 5-51
#funcchain 2-5, 5-51, 1-2

6 ¢ Index

Dynamic C 5.x

directives
#if 5-51
#ifdef 5-52
#ifndef 5-52
#interleave 5-52
#KILL 5-52
#makechain 2-5, 5-52, 1-2
#memmap 5-52, E-2
#nodebug 4-13, 5-27,
5-31, 5-33, 5-35, 5-37,
5-51, B-2, E-2
#nointerleave 5-52
#nouseix 2-10, 5-31,
5-53, E-2
#undef 5-12, 5-53
#use 2-4, 2-9, 5-3, 5-7,
5-9, 5-53, C-8
#useix 2-10, 5-31, 5-53, B4
#warns 5-51
#warnt 5-51
default E-2
Disassemble at Address
<ALT-F10> 4-18, 4-34
Disassemble at Cursor

<CTRL-F10> 3-7, 4-18, 4-34 Dynamic C 1-4, 2-2, 2-3, 2-9

disassembled code 4-17
disassembler 3-7
display options 4-19, 4-27
divide-assign operator (/=) 5-49
division operator (/) 5-46
DLC (download configuration) file
9-5
DLM (Download Manager)
9-2, 9-3, 94, 9-5, 9-6, F-2
DLM (ownload Manager) 1-3
DIM MAX PW_LEN 9-4
DIM MIN PW_LEN 9-4
DLM PASSWORD_LVL 9-4
DLM _PASSWORD_STR 9-4, 9-5
DIM TIMEOUT 9-4
DIMO1.C 9-3, 9-5, I-3
DLP files 9-2, 9-4, 9-5, 9-6, F-2
DMA channels 2-11
do loop 5-13, 5-28

done (old CoData field) 1-3
dot operator 5-19, 5-38, 5-42
download
configuration (DLC) file 9-5
remote 3-4, 9-2, 9-3, 9-4,
9-5, 9-6, F-2
Download Manager (DLM)
4-2, 4-14, 9-2, 9-3, 94,
9-5, 9-6, F-2, 1I-3
Download Program 9-4
Download to RAM F-3, 1-4
downloadable
files 4-14
program 3-3, 3-4, 3-5, 9-4,
9-5, 9-6, 1-3
downloading 3-3, 3-4, 3-5
Dump at Address 4-18
Dump to File 4-18, 4-19
dump window 4-19
dw 6-4
dynamic
memory allocation 4-26
storage allocation 5-20
variables 5-20
4-13, 5-52, F-5, 1-2
Application Frameworks 7-14
communication 3-3, 8-3
debugger 3-5, 3-6
Deluxe 3-2
differences 2-3, 2-4, 2-5,
2-6, 2-7, 2-8, 2-9, 2-10,
2-11, 5-2
directory 1-2
exit 4-8, 4-29
Help Contents 3-10
installation 1-2, 1-3, 1-4, 3-2
requirements 1-2
program group 1-4, 3-2
Standard 3-2
startup 3-10
support files 5-3
usage 3-3
versions 3-2

Technical Reference

Index ¢+ 7

E

EDIT menu 3-9, 4-3, 4-9,
4-10, 4-11, 4-12
edit mode 3-9, 4-2, 4-9, 4-12, 4-
16
editing 2-2, 4-2
options 4-2
editor 2-2
options 4-19, 4-20
EI 3-7, 8-2, 8-3
ei 6-15, 8-2, F-4
else 5-28
embedded assembly code 2-2,
2-7, 2-8, 6-7, 6-12, 6-13,
6-14, 6-15, 6-16
embedded quotes 5-41
End key 4-2, 4-3
end of file 4-3
end of line 4-3
EndHeader 2-9, 5-8, 5-9,
5-28, C-7, C-8
Enter Password 9-3, 9-4
enumerated types
absence of 2-10
EPROM 2-2, 2-4, 2-5, 2-8,
2-11, 3-3, 3-4, 3-5, 3-9,
4-2, 4-13, 4-25, 5-24,
5-25, 5-39, 8-3, 8-4,
9-2, A-2, D-2, D-5, D-6,
E-2, F-2, F-4, F-5
file generation 4-23
flash 3-3, 3-9, 4-2, 4-13,
5-24, 5-25, 5-39, 9-2,
D-2, D-5, D-6
equ 6-4
equal operator (==) 5-47
ERROR_EXIT 5-29, A-2, F-4
errors
codes A-3
editor 4-27
fatal A-3, A-4, A-5
handler
custom A-2
standard A-2

errors
locating 4-12
logging A-4, A-5
recovery A-4, A-5, 1-2
run-time A-2
ESC key 4-3
to close menu 4-3
Evaluate button 3-8, 4-17
examples
break 5-14
continue 5-14
for loop 5-13
goto 5-14
modules 5-9
multithreaded costatements 7-13
of array 5-18
union 5-19
Execute Downloaded Program 9-4
execution 4-14, 4-15, 4-17, 4-18
cursor 3-6, 4-15, 4-16
speed B-3
Exit <ALT-F4> 4-8, F-4
Expr. in Call 4-39
extended memory 2-4, 2-8,
4-24, 4-26, 4-27, 5-22,
5-23, 5-24, 5-26, 5-28,
5-37, 5-38, 5-50, 5-52,
5-54, 6-10, 6-11, 6-12,
6-16, 9-3, D-2, D-3,
D-4, D-5, D-6, D-7, E-2
data 5-53, 5-54, D-8, D-9,
D-10
functions D-8
strings 5-54, D-8, D-9, D-10
extensions
real time 2-11
extern 2-4, 2-9, 5-8, 5-9,
5-28, C-8
EZIO.LIB [4
EZIOCMMN.LIB [-4
EZIOMGPL.LIB [-4
EZIOPBDV.LIB [-4
EZIOPK23.LIB [4
EZIOPLC.LIB [4

8 ¢ Index

Dynamic C 5.x

F

F (status register) 4-34
F2 4-14, 4-16
F3 4-12, 4-13
F4 3-9, 4-12
F5 4-10
F6 4-10, 4-11
F7 3-6, 4-14, 4-15
F8 3-6, 4-14, 4-16
F9 3-6, 4-14
F10 4-30
fast 5-28
fatal errors A-3, A-4, A-5
FILE menu 4-3, 4-4, 4-5, 4-6,
4-7, 4-8, 1-2
Find <F5> 4-9, 4-10
Find next <SHIFT-F5> 4-9, 4-11
firsttime 5-28, 7-4, 7-11
flag 7-11, 7-12
functions 7-11, 7-12
flash 5-24, D-2, D-5
flash EPROM 3-3, 3-9, 4-2,
4-13, 5-24, 5-25, 5-39,
9-2, D-2, D-5, D-6
flash memory 2-4, 2-5
float 5-6, 5-28, 5-37, 5-54,
D-8
values 5-39
floating-point speed 2-11
for 5-4, 5-29
character literals 5-40, 5-41
loop 5-13
example 5-13
frame
reference point 6-12, 6-13
reference pointer 2-10, 5-31,
6-10, 6-12, 6-14, B-4, D-7
free 5-20
free memory 4-26
Free Size 4-26
free size 4-26
free space 4-35, 5-20
Full Speed Bkgnd TX 4-28

function calls 3-6, 4-39, 5-5,
5-12, 5-26, 5-53, 6-7,
6-12, 6-13, 6-14, 6-16,
B-4, 1-2

indirect 6-14

function chains 2-4, 2-5, 2-6,
5-33, 5-52, 7-4, 7-10,
7-11, G-2, H-2, 1-2

function headers C-6, C-7

descriptive 3-10, 3-11

function help C-7

function libraries 2-3, 2-9,
5-2, 5-3, 5-8, 5-28,
5-53, H-2

function lookup «CTRL-H> 3-10, 3-
11, 3-12, 4-38, 4-39, 4-40,
I-3

function returns 6-12, 6-13,
6-14, B-4

functions 5-4

entry and exit B-4
prototypes 2-9, 3-11, 5-5,
5-6, 5-7, 5-8, 5-9,C-8

G

global initialization 2-6, 2-7,
7-10, 7-11, 1-2, 1-4

global variables 5-20, B-2

goto 5-14, 5-15, 5-29

example 5-14

Goto <CTRL-G> 4-9, 4-11

greater than operator (>) 5-47

greater than or equal operator (>=)
5-47

Hangup Remote Modem 9-4
HANGUP_TIMEOUT 9-5
hard break points 3-7, 4-14, 4-16
hardware reset A-4, A-5, 1-4
header
BeginHeader 2-9
EndHeader 2-9

Technical Reference

Index + 9

header
function 3-10, 3-11, C-6, C-7
library C-6
module 5-8, 5-9, 5-28, C-8
Heap Size 4-26
heap storage 4-35, 5-20, F-4
Help
contents 3-10
online 3-10, 4-37
topical 3-10
HELP menu 3-10, 3-11, 3-12,
4-3, 4-36, 4-37, 4-38,
4-39, 4-40
HEX files 3-4, 4-23, F-2, F-4
information F-4
hexadecimal integer values 5-39
high-current output 2-2
hitwd A-5
HL 6-3, 6-6, 6-7, 6-8, 6-9, 6-
12, 6-13, 6-14, B-3
Home key 4-2, 4-3
horizontal tiling 4-30, 4-32,
4-33, 1-2

I register 8-3, 8-4,F-4
IBM PC 2-2, 4-15, 4-28
icons
arranged 4-30, 4-33
IEEE floating point 5-28
if 5-28, 5-29
multichoice 5-16
simple 5-15
with else 5-15
iff 3-7, 83
immediate evaluation
watch line 3-8
increment operator (++) 5-43
index checking E-2
index registers 2-4, 2-10, 6-3,
6-14
indirect function calls 5-29, 6-14
indirection operator (*) 5-20, 5-44

information window 4-26,
4-30, 4-35
init _on 7-3, 7-5
initialization
global 2-6, 2-7, 1-2, 1-4
initialized data F-2
initialized static variables
placed in ROM 2-5
input
analog 2-2
digital 2-2
insertion point 4-10, 4-11
INSPECT menu 3-7, 4-3,
4-16, 4-17, 4-18, 4-34, 1-2
installation
Dynamic C 1-2, 1-3, 1-4, 3-2
requirements 1-2, 3-2
int 5-6, 5-7, 5-30, 5-33,
5-36, 5-37, 5-54, D-8
as default function type 5-4
integer values 5-39
Intel
extended HEX format F-4
HEX files 4-23
HEX format 3-4, 4-23, F-2,
F-4
interrupt service routines 2-3,
2-7, 5-30, 5-32, 6-14,
6-15, 6-16, 8-2, 8-3, 8-4,
8-5
example 8-2, 8-4
interrupt status
and break points 3-7, 4-14, 4-16
interrupt vectors
setting 8-4
interrupts 2-7, 5-30, 5-32,
5-33, 6-14, 6-15, 6-16,
8-2, 8-3, 84, 8-5, 94, G4
base F-4
disabling 8-3
flag 3-7, 4-16
latency 6-14, 8-3
Mode 0 8-3
Mode 1 8-3

10 ¢+ Index

Dynamic C 5.x

interrupts
Mode 2 8-4
service routines 2-7
IntervalMsS 7-3
IntervalSec 7-3
isCoDone 7-4, 7-10, I-3
isCoRunning 7-4, 7-10
isCoRunnning -3
ISR (interrupt service routines)
8-2, 8-4
IX (index register) 2-4, 2-10,
5-31, 5-36, 5-53, 6-3, 6-
10, 6-11, 6-12, 6-14,
A-4, B-3, B-4, D-7, E-2
IY (index register) 6-3, 6-14

J

jump vectors
setting 8-3

K

kernel
real-time 2-11, B-4
key module 5-8, C-7
keyboard shortcuts 4-37
keystrokes 4-37
<ALT E> select EDIT menu 4-9

<ALT R> select RUN menu 4-14

<ALT-Backspace> undoing
changes 4-9

<ALT-C> select COMPILE menu
4-12

<ALT-CTRL-F3> Compile to
File with *.RTI File 4-14

<ALT-F> select FILE menu
4-3, 44

<ALT-F10> Disassemble at
Address 3-7, 4-18

<ALT-F2> Toggle hard break
point 4-14, 4-16

<ALT-F4> Exit 4-8

<ALT-F4> Quitting Dynamic C
4-4

<ALT-F9> Run w/ No Polling
4-14, 4-15

<ALT-H> select HELP menu
4-36

<ALT-I> select INSPECT menu
4-16

<ALT-0O> sclect OPTIONS menu
4-19

<ALT-SHIFT-backspace>
redoing changes 4-9

<ALT-W> select WINDOW menu
4-30

<CTRL-C> copying text 4-9

<CTRL-F> Compile to File 4-12

<CTRL-F10> Disassemble at
Cursor 3-7, 4-18

<CTRL-F2> Reset Program
4-14, 4-15

<CTRL-F3> Compile to File
with *.RTI File 4-12, 4-14

<CTRL-F4> Close 4-5

<CTRL-G> Goto 4-9, 4-11

<CTRL-H> Library Help lookup
3-10, 3-11, 3-12 4-3,
4-38, 4-39, 4-40

<CTRL-I> Toggle interrupt 3-7,
4-14, 4-16

<CTRL-N> next error 4-9, 4-12

<CTRL-O> Toggle polling
4-14, 4-16

<CTRL-P> previous error
4-9, 4-12

<CTRL-U> Update Watch
window 3-8, 4-16, 4-18

<CTRL-V> pasting text 4-9,
4-10

<CTRL-W> Add/Del Items
3-8, 4-16, 4-17

<CTRL-X> cutting text 4-9

<CTRL-Y> Reset target
4-14, 4-16

<CTRL-Z> Stop 3-8, 4-14,
4-15

Technical Reference

Index ¢+ 11

<F2> Toggle break point
4-14, 4-16
<F3> Compile to Target
4-12, 4-13
<F4> switching to edit mode 4-9
<F5> finding text 4-9, 4-10
<F6> replacing text 4-9
<F7> Trace into 4-14, 4-15
<F8> Step over 4-14, 4-16
<F9> Run 4-14
<F10> Assembly window 4-30
<SHIFT-F5> Find next 4-9, 4-11
keywords 2-5, 2-8, 5-2, 5-24,
5-25, 5-26, 5-27, 5-28,
5-29, 5-30, 5-31, 5-32,
5-33, 5-34, 5-35, 5-36,
5-37, 5-38, 6-11, 7-4,
8-2, B-2, D-5, 1-2

L

language elements 5-25, 5-38,
5-39, 5-40
operators 5-41
lastlocADDR 7-10, 7-11
lastlocCBR 7-10, 7-11
latency interrupts 6-14
less than operator (<) 5-46
less than or equal operator (<=)
5-46
Lib Entries 3-11, 4-38
LIB files 5-2
LIB.DIR 2-9, 4-38, 5-9,
5-53, C-8
libraries 2-3, 2-9, 5-2, 5-3,
5-28, 5-53, H-2
function 2-9
function prototypes 2-9
lookup dialog 3-11
modules 5-8, C-7
real-time programming 2-3, 2-11
library functions 3-10, 4-27,
4-38, 5-52
library headers C-6

Library Help lookup «<CTRL-H> 4-
38, 4-39, 4-40,C-7, 1-3
line continuation in directives 5-50
linking 2-2
locating errors 4-12
logical AND (&&) 5-48
logical memory 4-24, 4-26,
5-22, 5-23, 5-24, D-2,
D-3, D-4, D-5, D-6, D-7
logical operators 5-43, 5-48
logical OR (| |) 5-48
long 5-30, 5-37, 5-54, D-8
long integer values 5-39
longjmp A-4
lookup function <CTRL-H>
4-38, 4-39, 4-40
loops 5-12, 5-13, 5-28, 5-29
breaking out of 5-14
skipping to next pass 5-14

macros 5-10, 5-11, 5-12,
5-51, 6-4, 6-5, 1-2
restrictions 5-12
with parameters 5-10
main function 4-13, 5-2, 5-4,
5-5, 5-30, B-2, F-4, G-2,
G-3
malloc 4-26, 5-20
memory
allocation 4-26, 4-27
dump 4-17, 1-2
extended 2-4, 2-8, 4-24,
4-26, 4-27, 5-22, 5-23,
5-24, 5-26, 5-28, 5-37,
5-38, 5-50, 5-52, 5-54,
6-10, 6-11, 6-12, 6-16,
9-3, D-2, D-3, D-4, D-5,
D-6, D-7, D-8, D-9,
D-10, E-2
data 5-53, 5-54, D-8, D-9
strings 5-54, D-8
flash 2-4, 2-5

12 ¢+ Index

Dynamic C 5.x

memory
logical 4-24, 4-26, 5-22,
5-23, 5-24, D-2, D-3,
D-4, D-5, D-6, D-7
management 5-22, 5-23,
5-24, 5-26, 5-28, 5-33,
6-16, D-2, D-6, F-3
physical 2-11, 4-24, 4-25,
5-22, 5-23, 5-24, 5-37,
5-38, 5-54, D-2, D-3,
D-4, D-5, D-6, D-7,
D-8, D-9, D-10
random access 2-4, 2-5,
2-8, 2-11, 3-3, 3-9, 4-2,
4-13, 4-25, 5-24, 8-3,
9-2, D-2, D-5, F-3, F-4,
G-2
read-only 2-4, 2-5, 2-8,
2-11, 3-3, 3-4, 3-5, 3-9,
4-2, 4-13, 4-25, 5-24,
5-25, 5-39, 8-3, 8-4,
9-2, A-2, D-2, D-5, D-6,
E-2, F-2, F-4, F-5
reflection F-3
reserve 4-24, 4-26
root 2-8, 4-24, 4-26, 4-27,
5-22, 5-23, 5-24, 5-26,
5-28, 5-33, 5-52, 6-6,
6-8, 6-9, 6-10, 6-11,
6-12, 6-16, 9-3, D-2,
D-3, D-4, D-5, D-7,
D-8, D-9, D-10, E-2,
F-3, F-4
memory management unit (MMU)
2-8, 5-22, 5-23, 5-24,
6-12, D-2, D-3, D-4,
D-5, D-6, F-3
Memory options 4-2, 4-13,
4-19, 4-24
menu commands 4-3, 4-4
menus
COMPILE 4-3, 4-12, 4-13,
4-14, 1-3

EDIT 3-9, 4-3, 4-9, 4-10,
4-11, 4-12
FILE 4-3, 4-4, 4-5, 4-6,
4-7, 4-8, 1-2
HELP 3-10, 3-11, 3-12,
4-3, 4-36, 4-37, 4-38,
4-39, 4-40
INSPECT 3-7, 4-3, 4-16,
4-17, 4-18, 4-34, 1-2
OPTIONS 3-4, 4-2, 4-3,
4-12, 4-13, 4-19, 4-20,
4-21, 4-22, 4-23, 4-24,
4-25, 4-26, 4-27, 4-28,
4-35, 5-20, D-6, 1-2
RUN 3-6, 3-7, 4-3, 4-14,
4-15, 4-16
system 4-3
WINDOW 4-3, 4-26, 4-30,
4-31, 4-32, 4-33, 4-34,
4-35, 1-2
message window 4-12, 4-13,
4-14, 4-30, 4-33
Microsoft Windows Users Guide
4-2,4-4
minimized windows 4-33
minus operator (-) 5-44
MMU (memory management unit)
2-8, 5-22, 5-23, 5-24,
6-12, D-2, D-3, D-4,
D-5, D-6, F-3
mod-assign operator (%=) 5-49
Mode 0 interrupts 8-3
Mode 2 interrupts 8-4
modes
debug 4-12, 4-14, B-4
debug (same as run mode) 3-5
edit 3-9, 4-2, 4-9, 4-12, 4-16
preview 4-6
run 3-3, 3-5, 4-12, 4-14
modules 5-3, 5-8, 5-9, 5-28
body 5-8, 5-9, C-8
example 5-9
header 5-8, 5-9, 5-28, C-8
key 5-8, C-7

Technical Reference

Index ¢+ 13

modules
library 5-8, C-7
modulus operator (%) 5-46
mouse 4-2
moving
to beginning of file 4-3
to beginning of line 4-3
to end of file 4-3
to end of line 4-3
multiplication operator (*) 5-44
multipy-assign operator (*=) 5-49
multitasking 7-2, 7-3, 7-4,
7-5, 7-6, 7-7, 7-8, 7-9,
7-10, 7-11, 7-12, 7-13, 7-14
cooperative 2-7
multithreaded costatements
7-12, 7-13, 7-14
multithreaded systems 7-2

N

named
constants 2-4, 5-39
costatements 7-4
names 5-38
#define 5-39
New 4-4
newbbr F-5
Next error <CTRL-N> 4-9, 4-12
No Background TX 4-28
nodebug 4-15, 4-16, 4-18,
4-21, 5-30, 5-50, 6-2,
B-2, B-3, E-2
nonmaskable interrupts 8-3
norst 5-31
NOT
logical operator (1) 5-43
not equal operator (=) 5-47
nouseix 2-10, 5-31, 6-8, B-4
NULL 5-31
Null Device 3-4
numbers 5-39

(o)

Object File Option 4-23
octal integer values 5-39
offsets in assembly language
6-6, 6-8, 6-10, 6-11, 6-12

online help 3-10, 4-37, C-7
Open 4-4
opening an existing file 4-4
operators 5-41, 5-44, 1-2

, comma 5-49

! logical NOT 5-43

'=not equal 5-47

(macros) 5-10, 5-11

(macros) 5-10, 5-11

% modulus 5-46

%= assign 5-49

& address 5-45

& bitwise AND 5-45

&& logical AND 5-48

&= assign 5-49

() parentheses 5-42

(type) cast 5-44

* indirection 5-44

* multiplication 5-44

*= assign 5-49

+ plus 5-44

+ unary plus 5-44

++ increment 5-43

+=assign 5-48

-> right arrow 5-42

. dot 5-42

/ division 5-46

/= assign 5-49

< less than 5-46

<< shift left 5-46

<<= assign 5-49

<= less than or equal 5-46

= assign 5-48

==c¢qual 5-47

> greater than 5-47

>= greater than or equal 5-47

>> shift right 5-46

>>= assign 5-49

14 ¢+ Index

Dynamic C 5.x

operators
? : conditional 5-48
[1 array indices 5-42
~ bitwise exclusive OR 5-47
A= assign 5-49
| | logical OR 5-48
| bitwise inclusive OR 5-48
|= assign 5-49
~ bitwise complement 5-43
assignment 5-48, 5-49
associativity 5-41, 5-42, 5-50
binary 5-41
comma 5-49
conditional 5-48
decrement 5-43
in assembly language 6-5
logical 5-43, 5-48
minus 5-44
precedence 5-41, 5-50
relational 5-46, 5-47
sizeof 5-45
unary 5-41
unary minus 5-44
optimization B-2
Optimize For (size or speed) 4-21
options
compiler 4-19, 4-20, 4-21,
4-22, 4-23
debugger 4-19, 4-23
display 4-19, 4-27
editor 4-19, 4-20
memory 4-19, 4-24
serial 4-19, 4-28
OPTIONS menu 3-4, 4-2, 4-3,
4-12, 4-13, 4-19, 4-20,
4-21, 4-22, 4-23, 4-24,
4-25, 4-26, 4-27, 4-28,
4-35, 5-20, D-6, 1-2
OR logical operator (| |) 5-48
OR assign operator (|=) 5-49
output
analog 2-2
digital 2-2
high-current 2-2

P

PageDown key 4-2
PageUp key 4-2
parallel processes 2-4, 2-7
passing arguments 2-4, 2-10,
5-21, 6-7, 6-12, 6-13, 6-14
passwords in DLM 9-4, 9-6
Paste 4-10
pasting text <CTRL-V> 4-9, 4-10
PC 2-2, 4-15, 4-28
COM port 1-3, 3-3, 9-3
serial port 3-3
PC (program counter) A-4
physical address 5-23, D-3
physical memory 2-11, 4-24,
4-25, 5-22, 5-23, 5-24,
5-37, 5-38, 5-54, D-2,
D-3, D-4, D-5, D-6,
D-7, D-8, D-9, D-10
plus operator (+) 5-44
pointer checking 5-20, B-2, E-2
pointers 5-20, 5-21, 5-40,
5-42, 5-44, 5-45, 5-54, 7-14
uninitialized 5-20
polling 3-6, 4-15, 4-16
pop 5-31, 5-51, 5-52
ports
serial 2-11, 4-28
positioning text 4-11
post-decrement operator (--) 5-43
post-increment operator (++) 5-43
power failure 4-5, 5-31, A-4,
G-2, G-3
pre-decrement operator (--) 5-43
pre-increment operator (++) 5-43
precedence 5-41, 5-50
preprocessor E-2
preserving registers 6-13, 6-15,
6-16
preview mode 4-6
Previous error <CTRL-P> 4-9,
4-12

Technical Reference

Index ¢+ 15

primary register 6-3, 6-6, 6-7,
6-12, 6-13, 6-14, B-3
primitive data types 5-17, 5-18

Print 4-7, 1-2
Print Preview 4-6,4-7,1-2
Print Setup 4-7, 4-8,1-2
printf 3-5, 4-15, 4-16,
4-24, 4-34, 5-7, 5-40, 5-41
printing -2
ProComm 9-2, 9-3, 9-6, 1-3
program
example 5-7
program counter (PC) A-4
program flow 5-12, 5-13,
5-14, 5-15, 5-16
program group
Dynamic C 1-4, 3-2
programmable ROM 2-4, 2-5,
2-8, 2-11, 3-3, 3-4, 3-5,
3-9, 4-2, 4-13, 4-25,
5-24, 5-25, 5-39, 8-3,
8-4, 9-2, A-2, D-2, D-5,
D-6, E-2, F-2, F-4, F-5
programming
real-time 2-3, 2-7
promotion 5-42
protected variables 2-3, 2-4,
2-8, 5-31, A-5, B-3, G-2
prototypes C-8
function 2-9, 3-11, 5-5,
5-6, 5-7, 5-8, 5-9
in headers 5-8, C-7
PSW_TIMEOUT 9-4
punctuation 5-53
push 5-31, 5-51, 5-52

Q

quitting Dynamic C <ALT-F4>
4-4, 4-8

R

RAM 4-25, 5-24, 8-4, D-2,
D-5, F-3, F-4, F-5

RAM
static 2-4, 2-5, 2-8, 2-11,
3-3, 3-9, 4-2, 4-13, 4-25,
5-24, 8-3, 9-2, D-2, D-5,
F-3, F-4, G-2
read-only memory 2-4, 2-5,
2-8, 2-11, 3-3, 3-4, 3-5,
3-9, 4-2, 4-13, 4-25,
5-24, 5-25, 5-39, 8-3,
8-4, 9-2, A-2, D-2, D-5,
D-6, E-2, F-2, F-4, F-5
readireg 8-3
real-time
extensions 2-11
kernel (RTK) 2-3, 2-11, B-4
library 2-11
operations 2-11
programming 2-3, 2-7
systems 7-2
redoing changes
<ALT-SHIFT-backspace> 4-9
reentrant functions B-2, B-4
registers 2-4, 5-32, 6-7, 6-8,
6-9, 6-11, B-3, B4
set 6-3
snapshots 4-34
variables 5-20
window 2-2, 3-6, 4-30, 4-34
relational operators 5-46, 5-47
remote download 3-4, 9-2,
9-3, 9-4, 9-5, 9-6, F-2, 1-3
remote target information (RTT) file
3-3, 3-4, 3-5, 4-2, 4-12,
4-14, 5-2, 9-5, 9-6, F-2
Replace <F6> 4-3, 4-10
replacing text 4-9, 4-10, 4-11
Report DLM Parameters 9-3
reserve memory 4-24, 4-26
reset 2-12, 3-9, G-2, G-3,
G4, 14
software 4-16
super G-2
reset generation G-4

16 ¢ Index

Dynamic C 5.x

Reset program <CTRL-F2>
4-14, 4-15
Reset target <CTRL-Y> 4-14,
4-16
resetting program 4-15
restarting 2-12
program 4-15
target controller 4-16
ret 5-31, 5-32, 6-12, 6-15, 8-2
reti 5-31, 5-32, 6-15, 8-2
retn 5-31, 5-32, 6-15, 8-2, 8-3
return 5-32, 5-35, 6-12, 8-2
return address 6-7, 6-11
returning to edit mode 3-9
reverse searching 4-10, 4-11
ROM 4-15, 4-25, 5-24, 8-4,
A-2, D-2, D-5, E-2, F-2,
F-4, F-5
programmable 2-4, 2-5, 2-8,
2-11, 3-3, 3-4, 3-5, 3-9,
4-2, 4-13, 4-25, 5-24,
5-25, 5-39, 8-3, 84,
9-2, A-2, D-2, D-5, D-6,
E-2, F-2, F-4, F-5
root 4-26, 4-27, 5-22, 5-33,
5-52, D-3, D-4, D-5,
D-7, D-8
code F-3
memory 2-8, 4-24, 4-26,
4-27, 5-22, 5-23, 5-24,
5-26, 5-28, 5-33, 5-52,
6-6, 6-8, 6-9, 6-10, 6-11,
6-12, 6-16, 9-3, D-2,
D-3, D-4, D-5, D-7,
D-8, D-9, D-10, E-2,
F-3, F-4
reserve 4-26, 4-27
root2xmem D-9
RS-232 communication 2-2, 2-11
RS-485 communication 2-2, 2-11
rst 028h 4-15
RST 28 E-2, F-4
RST 28H B-2

RTI (remote target information) file
3-3, 3-4, 3-5, 4-2, 4-12,
4-14, 5-2, 9-5, 9-6

RTK (real-time kernel) 2-3,
2-11, B4

RTK.LIB 7-2

Run <F9> 3-6, 4-14

RUN menu 3-6, 3-7, 4-3,
4-14, 4-15, 4-16

run mode 3-3, 3-5, 4-12, 4-14

Run w/ No Polling <ALT-F9»
3-6, 4-14, 4-15

run-time

checking 4-21
errors

and standalone programs A-2
stack size 4-26

Run...

Windows 1-2
running

a program 4-14

in polling mode 4-14

standalone 2-2

with no polling 4-15

S

sample programs 5-2, 5-54,

9-3, 9-5, D-10, I-3
basic C constructs 5-7

SAMPLES subdirectory 5-2,
5-54, D-10

SAMPLES\AASC subdirectory
9-3, 9-5, 1I-3

Save 4-5

save and restore registers A-4

Save as 4-5, 4-6

Save Environment 4-29, 1-2

saving a file 4-4, 4-5

saving and restoring registers 8-2

saving as a new file 4-4

scroll bars 4-2

scrolling 4-2, 4-3, 4-34

Search for Help 4-37

searching for text 4-10, 4-11

Technical Reference

Index ¢+ 17

searching in reverse 4-10, 4-11
segchain 2-5, 5-33, I-2
selecting
COMPILE menu <ALT-C> 4-12
EDIT menu <ALT-E> 4-9
FILE menu <ALT-F> 4-3, 4-4
HELP menu <ALT-H> 4-36
INSPECT menu <ALT-I> 4-16
OPTIONS menu <ALT-0> 4-19
RUN menu <ALT-R> 4-14
WINDOW menu <ALT-W> 4-30
selecting text
to beginning of file 4-3
to end of file 4-3
to end of line 4-3
to start of line 4-3
serial communication 2-2,
2-11, 4-28, 8-3
clocked 2-11
serial options 4-13, 4-19, 4-28
serial port 3-3, 4-28
ASCI 6-15
PC 9-3
Set Password 9-3, 9-4
setireg 8-3
setjmp A-4
setting
interrupt vectors 8-4
jump vectors 8-3
shared variables 2-3, 2-4, 2-8,
5-33, B3
shift left operator (<<) 5-46
shift right operator (>>) 5-46
SHIFT-F5 4-11
shift-left-assign operator (<<=)
5-49
shift-right-assign operator (>>=)
5-49
short 5-33
shortcuts
keyboard 4-37
Show Tool Bar 4-29
single stepping 3-6, 4-18, 6-2,
B-4

single stepping
in assembly language B-2
with descent <F7> 4-15
without descent <F8> 4-16
size 5-34
sizeof 5-34, 5-45
skipping to next loop pass 5-14
soft break points 3-7, 4-14,
4-16, A-3
software
errors 2-11
libraries 2-9, 5-2, 5-3, 5-8,
5-28, 5-53, H-2
reset 4-16
source window 4-30
SP (stack pointer) 2-4, 2-10,
5-53, 6-3, 6-7, 6-13,
6-14, 6-16, A-4, D-7, F-4
special characters 5-40
special symbols
in assembly language 6-5
speed 5-34
SRTK.LIB 7-2
stack 5-21, 5-26, 5-31, 6-7,
6-8, 6-9, 6-10, 6-11,
6-12, 6-13, 6-14, 6-15,
6-16, A-4, B-4
checking B-2, B-3, B-4, E-2
frame 6-7, 6-8, 6-9, 6-11,
6-12, 6-13, 6-14, 6-16
frame reference point 6-12,
6-13
frame reference pointer 2-10,
5-31, 6-10, 6-12, 6-14,
B-4, D-7
limit F-4
pointer (SP) 2-4, 5-53, 6-3,
6-7, 6-13, 6-14, 6-16,
A-4, D-7, F-4
size
auxiliary 4-26
run-time 4-26
snapshots 4-35
verification 4-26

18 ¢+ Index

Dynamic C 5.x

stack
window 2-2, 3-6, 4-30, 4-35
standalone
assembly code 6-6
programs 2-2
standard error handler A-2
start (old CoData field) I-3
startup code F-4
statements 5-4
static
RAM 2-4, 2-5, 2-8, 2-11,
3-3, 3-9, 4-2, 4-13, 4-25,
5-24, 8-3, 9-2, D-2, D-5,
F-3, F-4, G-2
variables 2-4, 2-5, 2-9, 2-10,
5-34, 5-51, 6-6, 6-7, 6-8,
6-9, 6-11, B-2, B-3, E-2,
F-4
status register (F) 4-34
STDIO window 2-2, 3-5, 3-6, 4-
24, 4-30, 4-34, A-2, A3
Step over <F8> 3-6, 4-14, 4-16
Stop <CTRL-Z> 3-8, 4-14, 4-15
stop bits 4-28
stopping a running program 4-15
storage class 5-4, 5-26, 5-32,
5-34, 5-51, 6-7, B-3
auto 5-20
default 2-4, 2-5, 2-10, E-2
register 5-20
static 5-20
strcpy 4-39, 4-40, 5-40
STRING.LIB 5-40
strings 5-37, 5-40, 5-51, 5-54
extended memory D-9
functions 5-40
inC 5-17
in extended memory 5-54,
D-8, D-9, D-10
terminating null byte 5-40
struct 5-4, 5-19, 5-21,
5-34, 5-42, 6-6, 6-7,
6-12, 6-13, 6-14

structures 5-19, 5-42, 6-6,
6-7, 6-12, 6-13, 6-14
return space 6-7, 6-12,
6-13, 6-14
subdirectories
SAMPLES 5-2, 5-54, D-10
SAMPLES\AASC 9-3, 9-5, I-3
subfunc 2-4, 2-10, 5-35,
B-3, B-4
subfunctions 2-4, 2-10, 5-35,
B-3, B-4
subscripts
array 5-18
subtract assign operator (-=) 5-48
super reset 2-7, 2-12, G-2, G-4
support files 5-3
suspend 2-10
suspended costatements 7-2,
7-3, 7-5, 7-6, 7-1, 7-8
switch 5-16, 5-26, 5-27,
5-28, 5-35, D-7
breaking out of 5-14
switching to edit mode 3-9,
4-9, 4-12
symbolic constant 5-51
Sync. Bkgnd TX 4-28
syntax
checking 3-4
costatements 7-4
sysForceReset 2-12, G-4
sysForceSupRst 2-12, G-4
sysIsPwrFail G-3
sysIsSuperReset G-3
sysIsWwDTO G-3
sysSupRstChain G-2

T

table of operator precedence 5-50
targetless compilation 3-3, 3-4,
3-5, 4-12, 4-14, 1-3
text cursor 4-2, 4-39
Tile Horizontally 4-32, 4-33
tiling windows 4-30, 4-32,
4-33, 1-2

Technical Reference

Index ¢+ 19

timer 2-2
programmable 2-11
watchdog 2-12, A-4, A-5,
G-3, G4
Toggle break point <F2> 4-14,
4-16
Toggle hard break point
<ALT-F2> 4-14, 4-16
Toggle interrupt <CTRL-I>
3-7, 4-14, 4-16
Toggle polling <CTRL-O> 3-6,
4-14, 4-16
toolbar 4-29, I-3
print preview 4-7
topical help 3-10
Trace into <F7> 3-6, 4-14, 4-15
type
casting 5-42, 5-44
checking 3-4, 4-12, 4-22, 5-5
conversion 5-42, 5-44
definitions 5-6
typedef 5-6, 5-36
types
function 5-4

U

unary
minus operator (-) 5-44
operators 5-41
plus operator (+) 5-44
unbalanced stack 6-16
undoing changes <ALT-Back-
space> 4-9
uninitialized
data F-3
pointers 5-20
union 5-4, 5-19, 5-36, 5-42
unpreserved registers 6-13,
6-15, 6-16
unsigned 5-36
unsigned int 5-54, D-8
unsigned integer values 5-39
unsigned long 5-54, D-8
untitled files 4-5, 4-6

Update Watch window <CTRL-U>
3-8, 4-16, 4-18
uplc_init
initialize CoData structures 7-4
useix 2-10, 5-36, 6-9, B-4
using
assembly language 2-7, 2-8
Dynamic C 3-3

\'

variables
global 5-20
vdInit 7-6
initialize CoData structures 7-4
vertical tiling 4-30, I-2
void 5-4

w

waitfor 5-28, 5-37, 7-3,
7-4, 7-5, 7-6, 7-8, 7-11,
7-12

warning reports 4-21

warnings 4-12, D-8

watch

dialog 3-8, 4-17
expressions 3-8, 4-17, 4-18,
4-34
line
immediate evaluation 3-8
list 4-18
for repeated evaluation 3-8
window 2-2, 3-6, 3-7, 3-8,
4-17, 4-30, 4-34
adding items 4-16, 4-17
clearing 4-17
deleting items 4-16, 4-17
updating 4-18

watchdog timer 2-12, A-4,
A-5, G-3, G4

while 5-4, 5-12, 5-26, 5-27,
5-37, D-7

WINDOW menu 4-3, 4-26, 4-
30, 4-31, 4-32, 4-33, 4-
34, 4-35, 1-2

20 ¢+ Index

Dynamic C 5.x

windows 1-4, 3-2, 4-2, 4-30

assembly 2-2, 3-6, 4-30,
4-34, 6-2

cascaded 4-30, 4-31

debugging 3-5, 3-6

information 4-26, 4-30, 4-35

message 4-30, 4-33

minimized 4-33

register 2-2, 3-6, 4-30, 4-34

stack 2-2, 3-6, 4-30, 4-35

STDIO 2-2, 3-5, 3-6, 4-24,
4-30, 4-34, A-2, A-3

tiled horizontally 4-30, 4-32,
4-33

tiled vertically 4-30

watch 2-2, 3-6, 3-7, 3-8,
4-17, 4-18, 4-30, 4-34

X

xdata 2-8, 5-37, 5-54, D-8
XDATA.C 5-54, D-10
xgetfloat 2-8

xgetong D-9

xmem 4-26, 4-27, 5-22, 5-23,
5-24, 5-37, 5-52, 6-11,
D-3, D-4, D-5, D-6, D-7

XMEM reserve 4-26

XMEM.LIB 2-8, 5-53

xmem2root D-9

xmemok 5-37, 5-50, 6-11, D-8

XMODEM 9-2, 9-4

XOR assign operator (*=) 5-49

xstring 2-8, 5-38, 5-54, D-
8, D-9

xstrlen 2-8, D-9

Y
yield 5-38, 7-3, 7-4, 7-7, 7-8
Z

7180 2-2, 2-3, 2-8, 2-11, 4-
34, 5-22, 6-3, 8-3, B-2, B-
3, D-2, D-3, D-4, D-5

780 2-11, 8-2, 8-3, 8-4

Zilog 2-2, 2-11, 8-3

Technical Reference

Index ¢ 21

22 ¢+ Index Dynamic C 5.x

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:
24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737

(530) 753-5141

(530) 753-0618
http://www.zworld.com
zworld@zworld.com

Part No. 019-0003-02
Revision 2

Printed in U.S.A.

